Treating Phragmites in High Quality Natural Communities

Phyllis Higman Michigan Natural Features Inventory

Thanks to Sue Tangora, Mark Sargent, Brian Piccolo, Pam Grassmick, Suzan Campbell, Daria Hyde, Ed Schools, Leslie Kuhn, Steve Thomas, Dave Cuthrell, Mike Monfils, Yu Man Lee, Ellen Jacquert, all our northern Michigan Partners and our funders

DNR, DEQ, USFWS, NFWF

People protect what they know and value.

MNFI

- Coastal zone
- Strategic action
- Pop Quiz
- Impacts
- What to do?

Michigan Natural Features Inventory Maintain comprehensive database on Michigan's rare elements of biodiversity

GIS based: 15,438 <u>element occurrences</u> (EO's) endangered, threatened, special concern

Threatened

76 natural communities

302 animals

Endangered

420 plants

Globally imperiled

Listings and Ranks

State & Federal Endangered: E LE legally
 State & Federal Threatened: T LT protected

State Special Concern: SC
Global Ranks: G1.....G5
State Ranks: S1.....S5
Element Occurrence Ranks: A-D

not legally protected; use to prioritize conservation

 <u>NatureServe Programs</u> collect and track data the same way – enables comparisons across jurisdictions

Coastal Zone EO's

Michigan's Coastal Heritage

Strategic Plan

Meeting the Challenge of Invasive Plants: A Framework for Action

prepared for the Michigan Department of Natural Resources Wildlife Division

by: Phyllis Higman & Suzan Campbell

Michigan Natural Features Inventory P.O. Box 30444; Lansing, Michigan 48909-7944 Report Number 2009-11 March 9, 2009

Project Coordinators Mark Sargent & Sue Tangora Michigan Department of Natural Resources Wildlife Division

Early Detection & Treatment of Phragmites in Northern Michigan

Regional approach: high quality areas Phragmites just coming in

Collaboratiion:

- Education
- Surveys
- Prioritizing
- Treatment
- Monitoring

Collaboration!

Overlay of obragmites

phragmites on biodiversity scored sites

<u>Darker green:</u> higher score

<u>Red:</u> phragmites points

Helen Enander, Kraig Korroch, Daria Hyde, Suzan Campbell, Ed Schools,

Outcomes!

- 12+ workshops conducted
- 275 miles surveyed
- ◆ 1 regional phrag distribution map
- 1 coastal biodiversity map
- ♦ 14+ local coordinators
- > 7 invasive phragmites ordinances

Outcomes!

Phragmites —Native or Not?

Distinguishing native Phragmites from the invasive non-native subspecies in the Great Lakes region

Phragmites

— and the rare plants, animals and natural communities along Michigan's northern coasts

Thanks to Suzan Campbell, Daria Hyde

Workshops and Events

Early Detection and Rapid Response (EDRR) along Michigan's northern coastlines

Coastal Zone:

- 7 Federal listed species
- 40 State listed & SC species
- 15 wetland types

Inland wetlands too!

Houghton's goldenrod

Photo: Phyllis Higman

Photo: Sue Crispen

American Bittern

State special concern

Spotted Turtle

State threatened

Photo: Jim Harding

Hine's Emerald Dragonfly

State and federal endangered

Native Phragmites

Photo: Suzan Campbell

What to do?

- Don't throw the baby out with the bathwater!
- Mapping distribution of phragmites and sites of concern is critical!
- Understand species life history!
- Species and communities are not static!

1. Learn what's in your area!

- Information requests
- Data contracts
- Web database access
- Web info & applications
 Natural features abstracts
 Rare species explorer
 Watershed element data
 Biorarity/probability layers
 County Lists
- DNR: Michigan Endangered species assessments
- Surveys and workshops!

Rare Species Explorer

New Search

Species Search

Criteria

Scientific or Common Name

Taxonomic Group

All	~
All Animals	
All Plants	
Amphibians	
Birds	
Fish	~

Habitat / Community Type

All	~
Palustrine	
Marsh	
Interdunal wetland	
Intermittent wetland	0.000
Submergent marsh	~

Results

Column Name	Display	Sort By
Scientific Name		۲
Common Name		0
Taxonomic Group		0
State Status		0
US Status		0
State Rank		0
Global Rank		0
Habitat / Community Type		
Survey		

2. Map Important places! = values

If you don't know what and where they are, how can you strategize to protect them?

3. Hone Your Identification Skills!

4. Implement Early Detection Monitoring

- important places
- likely entry points

5. Map phragmites distribution!

Photo: Suzan Campbell

Photo by Suzan Campbell

Lake Huron tansy

Houghton's goldenrod

6. Prioritize treatment!

- Important places
- Success likely
- Outliers
- Sources
- Pathways

7. Understand potential impacts

Techniques:

- Herbicides*
- Mowing/cutting
- ◆ Fire

*

- Flooding
- Grazing

approved aquatic formulation! approved aquatic surfactants!

Impacts: Toxic kill Physical kill Displacement Disrupted food webs Disrupted nesting Disrupted eggs Disrupted hibernacula Altered biotic conditions

8. Consider timing of techniques

Glyphosate	August – September
Imazapyr	June – September
Cutting	2 wks after herbicide;
Mowing	late summer, fall, winter
Burning	1 yr after herbicide application late summer, fall, winter before green-up
Flooding	mid-August – July after drawdown
Grazing	???

Birds

- A: Pre-nesting
- N: Nesting
- Y: Nesting young
- P: Post-nesting

Red: Highly vulnerableTan: Potentially vulnerableBlue: Not vulnerable

<u>Mike Monfils</u>, Daria Hyde Best guesses; lack rigorous studies!

Amphibians & Reptiles

\langle	J	41	J		M	IAF	2	1	A	PR			MAY JU					NE JULY AUG								G		SEPT					
						i i											2																
HT	HT	нт	HT	нт	HT	HT	A	A	A	A	A	A	A	A/BA	A/BA	A/BA	A/8A	A/BA	ABA	A/BA	A/BA	A/BA	A/M	AIM	A/M	A/M	AM	A/M	A	A	A		
HA	HA	HA	HA	HA	HA	HA	HA	А/ВА	A/BA	A/BA	A/BA	A/BA	A/BA	A/BA	A/NT	A/NT	A/NT	A/NT	A/NT	A/E	A/E	A/E	A/E	A/E	A/E	E/M	E/M	E/M	A/M	A/M	A/M		
HT	HT		HT	HT HA		HT	HT A/BA	HT			A/BT A/BA			A/BT		A/NT A/NT	A/NT A/NT	A/NT A/NT	A/NT N/E	A/NT	A/NT	A/E	A/E E	A/E E/M	A/E E/M	A/E E/M	A/E E/M	BT/M	BT/M	BT/M	BT/M A/M		
HT	HT	10.0	HT	HT	HT	HT	HT	HT	HT	A	A	A	A	A/BA A	A/BA A	A/B	A/B	A/B	A/B	A/NT	A/NT	A/NT	- T. (1)	A	A	A/M	A/M	A/M	A/M	A/M	A/M		
нт	нт	нт	нт	нт	HT	нт	нт	нт	нт	нт	нт	A/B	A/B	A/B	A/B	A	А	А	A	A	A	А	А	АЛИ	A/M	A/M	A/M	АЛИ	A/M	А	А		
нт	нт	нт	нт	нт	нт	нт	нт	A	A	A	A	A/B	A/B	A/B	A/B	A/B	A/B	A/B	A/B	A/B	A/B	A/B	NT/B	NT/B	NT/B	NT/B	NT/B	NT/B	A/B	A/B	A/B		
	A: Active adults B: Breeding														Red: Highly vulnerable																		
XX		•		C			ig											Tan: Potentially															
	Ν	•	N	es	ti	nç	J ,	e	gg	JS,	У	0	un	ıg				vulnerable															
	M	•	M	let	ta	m	O	p	hc	osi	s,	h	at	tcł	nli	ng		Blue: Not vulnerable															
			е	m	ig	Ira	ati	or	٦,	er	me	er	ge	en	ce	J							1										
	E:		A	es	sti	iva	at	io	n			A	- A	٩u	lat	ic	\sum								0					da			
	Н	•	ŀ	lik)e	rr	าล	tic	n			T		err	es	tria	al			<u> </u>		VIa		<u>Le</u>	<u>e</u> ,		ar I		Hy	ue			

Best guesses, lack studies...

Butterflies and Moths

JAN				MAR				APR				MAY			JUNE				JL	JLY		AL	JG		SEPT					
Р	Р	Р	Р	Р	Р	Р	P	P	P	P	Р	Р	P	Р	А	A	Δ	А	А	A	A	А	А	A	A	A	A	A/E	A/E	E/L
L	L	L	L	L.,	L	L	L	L.	L	L	P	Р	P	A	A	A	E	L	L	L	L	L	L	L	L	L	L	L	L	L
Ρ	Ρ	Р	Р	Ρ	Р	Р	P	P	P	P	Ρ	Р	P	Р	Α	Α	A	A	Α	Α	Α	Α	Α	Α	E	L	L	L	L	P
E	E	E	E	E	E	E	E	E	E	E	E	E	E	L	La - 3	L	L	L	L	L	Р	P	P	Α	A	А	Α	E	E	E
Р	Р	P	Р	P	Р	Р	P	P	Р	Р	Р	A	А	A	A	A	A	А	A	A	E	Е	L	L	L	Ľ.	L	L	L	р
N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	А	А	A	А	А	А	А	A	A	А	А	Α	N
N	N	N	N	N	N	N	N	N	N	N	N	N	N	А	А	A	A	А	А	A	N	N	N	N	N	N	N	N	N	N
E	E	E	E	E	E	E	E	E	E	E	E	E	N	N	N	N	N	N	N	N	А	А	А	А	A	A	А	А	А	A
N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	А	A	A	А	А	A	A	А	А	А	A	А	А	А	А	E
	A		H	M	X	XX	11	HH	HI	MA		$^{\prime}\times$	\sim	X	X	X	X	H	H											

A: Pre-nestingL/N: Larvae, NymphsP: PupaeE: Eggs

Red: Highly vulnerableTan: Potentially vulnerableBlue: Not vulnerable

<u>Dave Cuthrell</u>, Daria Hyde Best guesses; lack rigorous studies!

Recommendations Detect phragmites early! Field survey to assess what you have • Hand swiping, spot treat vs. broadcast Burn early spring* prior to animal emergence OR late summer Search and temporary relocate Flush nests and critters Work an inside out pattern *will stimulate stems that weren't killed

Photo: Suzan Campbell

Detect infestations early! Monitor the results! Study impacts on species! Identify <u>winnable</u> battles in highly infested areas!

Photo by Leslie Kuhn