Recently Published Research

See below for recently published papers on Phragmites. These papers were collected in our regular Research Round-Up – a digest of academic papers published in the previous month(s). Sign up for the newsletter here! 

To search the papers listed below, click Ctrl+F and to access your internet browser search bar, then type in the keyword, author or journal you are looking for. Need help? Contact us! 

Cattle grazing for invasive Phragmites australis (common reed) management in Northern Utah wetlands
Duncan et al. 
Utah State University Extension Fact Sheet 
URL |  Published online: Sep 19, 2019
 
Shared histories of co-evolution may affect trophic interactions in a freshwater community dominated by alien species
Haubrock et al.  
Frontiers in Ecology and Evolution
DOI: https://doi.org/10.3389/fevo.2019.00355 |  Published online: Sep 24, 2019
 
Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lake
Huang et al.  
Limnology and Oceanography
DOI: https://doi.org/10.1002/lno.11325 |  Published online: Sep 9, 2019
 
Establishment and potential use of woody species in treatment wetlands
Grebenshchykova et al. 
International Journal of Phytoremediation
DOI: https://doi.org/10.1080/15226514.2019.1658712 |  Published online: Sep 1, 2019
 
Unravelling the role of vegetation in the attenuation of contaminants of emerging concern from wetland systems: Preliminary results from column studies
de la Paz et al. 
Water Research 166(1). 
DOI: https://doi.org/10.1016/j.watres.2019.115031 |  Published online: Aug 31, 2019
 
Arbuscular mycorrhizal fungi effect growth and photosynthesis of Phragmites australis (Cav.) Trin ex. Steudel under copper stress
Wu et al. 
Plant Biology, forthcoming issue. 
DOI: https://doi.org/10.1111/plb.13039 |  Published online: Aug 29, 2019
 
The independent effects of nutrient enrichment and pulsed nutrient delivery on a common wetland invader and its native conspecific
Frevola and Hovick
Oecologia 191(2), pp. 447-460
DOI: https://doi.org/10.1007/s00442-019-04493-y |  Published online: Aug 29, 2019
 
Effect of human activities on floristic composition and diversity of desert and urban vegetation in a new urbanized desert ecosystem
Hassan and Hassan
Heliyon 5(8)
DOI: https://doi.org/10.1016/j.heliyon.2019.e02283 |  Published online:Aug 20, 2019
 
Intraspecific facilitation explains the persistence of Phragmites australis in modified coastal wetlands
Reijers et al. 
ECOSPHERE
DOI: https://doi.org/10.1002/ecs2.2842 |  Published online:Aug 6, 2019
 
Ecosystem functioning of Great Salt Lake wetlands
Pendleton
Utah State University MSc Thesis
DOI: https://digitalcommons.usu.edu/etd/7557 |  Awarded: Aug 2019
 
Why are tall-statured energy grasses of polyploid species complexes potentially invasive? A review of their genetic variation patterns and evolutionary plasticity
Lambertini
Biological Invasions 21(10), pp. 3019-3041. 
DOI: https://doi.org/10.1007/s10530-019-02053-2  |  Published online: July 15, 2019
 
Ancient buoyancy devices in Sweden: floats made of reed, club-rush, inflated skins and animal bladders
Lidström and Svanberg
Journal of Ethnological Studies 57(2), pp. 85-94. 
DOI: https://doi.org/10.1080/04308778.2019.1646390 |  Published online: July 30, 2019
 
Significant increase in nutrient stocks following Phragmites australis invasion of freshwater meadow marsh but not of cattail marsh
Yuckin and Rooney
Frontiers in Environmental Science, forthcoming issue.
DOI: https://doi.org/10.3389/fenvs.2019.00112 |  Published online: Jul 11, 2019
 
Identification of most spectrally distinguishable phenological stage of invasive Phramites australis in Lake Erie wetlands (Canada) for accurate mapping using multispectral satellite imagery
Rupasinghe and Chow-Fraser
Wetlands Ecology and Management, 27(4), pp. 513-538. 
DOI: https://doi.org/10.1007/s11273-019-09675-2  |  Published online: June 27, 2019
 
An analysis of invasive species management in the Niagara Region of Ontario, Canada: establishment of a database to improve knowledge sharing
L. Brown 
Master’s thesis, Brock University
Link: http://hdl.handle.net/10464/14164 |  Published online: June 11, 2019
 
Mapping invasive Phragmites australis in the Old Woman Creek Estuary using UAV remote sensing and machine learning classifiers
T. Abeysinghe et al. 
Remote Sensing, Volume 11, Issue 11
DOI: https://doi.org/10.3390/rs11111380 | Published online June 10, 2019
 
Carbon dioxide fluxes of temperate urban wetlands with different restoration history
K.V.R. Schäfer et al. 
Agricultural and Forest Meteorology 275, pp 223-232
DOI: https://doi.org/10.1016/j.agrformet.2019.05.026  | Published online: June 3, 2019
 
Evaluating Phragmites australis management: Impacts of herbicide management on plant community composition of Great Lakes coastal wetlands
J.E. Bonello
Master’s thesis, Eastern Michigan University
Link:https://search.proquest.com/openview/6f1c5d3635a1430ea1eb45da70d1b904| Published online: June 2019
 
Flow dynamics and turbulence patterns in a drainage channel colonized by common reed (Phragmites australis) under different scenarios of vegetation management
A. Errico et al. 
Ecological Engineering 133, pp. 39-52
DOI: https://doi.org/10.1016/j.ecoleng.2019.04.016 | Published online April 23, 2019
 
Abiotic and landscape factors constrain restoration outcomes across spatial scales of a widespread invasive plant
C. Rohal et al. 
Plant Science 18, 2019
DOI: https://doi.org/10.3389/fpls.2019.00481  | Published online April 18, 2019
 
Differences in functional traits of leaf blade and culm of common reed in four habitat types
M.G. Hong et al. 
Journal of Ecology and Environment 43.1, pp 12
DOI: https://doi.org/10.1186/s41610-019-0113-8  | Published online: April 8, 2019
 
A review of the ecological effects of European Common Reed (Phragmites australis) on fishes and fish habitat in North America
E. Rose
The Journal of Student Science and Technology 11.1
DOI: https://doi.org/10.13034/jsst.v11i1.294 | Published online: April 2019
 
Effective phosphorous reduction by a riparian plant buffer zone enhanced with a limestone-based barrier
W. Fratczak et al. 
Ecological Engineering 130, pp. 94-100. 
DOI: https://doi.org/10.1016/j.ecoleng.2019.01.015 | Published online Feb 14, 2019
 
Using unmanned aerial vehicles for vegetation mapping and identification of botanical species in wetlands
A. Bertacchi et al.  
Landscape and Ecological Engineering, forthcoming issue
DOI: https://doi.org/10.1007/s11355-018-00368-1 | Published online Feb 11, 2019
 
Elemental composition and fungal colonisation of decomposing Phragmites australis (Cav.) Trin. ex Steud. litter at different water regimes
M. Likar et al. 
Acta Biological Slovenica 61(2), pp. 71-84. 
Link | Published online Feb 11, 2019
 
Physiology of a plant invasion: biomass production, growth and tissue chemistry of invasive and native Phragmites australis populations
P. Pysek et al.  
Preslia 91, 51-2019
DOI: https://doi.org/10.23855/preslia.2019.051 | Published online: Feb 11, 2019
 
Sediment phosphorus release in response to flood event across different land covers in a restored wetland
C. Peng et al. 
Environmental Science and Pollution Research, forthcoming issue. 
DOI: https://doi.org/10.1007/s11356-019-04398-6| Published online Feb 4, 2019
 
Isolation and characterization of a halotolerant, hydrocarbon-degrading endophytic bacterium from halobiotic reeds (Phragmites australis) growing in petroleum-contaminated soil
W. Tao et al. 
Science of Advanced Materials 11(2), pp. 189-195. 
DOI: https://doi.org/10.1166/sam.2019.3438 |  Published online: Feb 1, 2019. 
 
Anaerobic digestion of wetland biomass from conservation management for biogas production
S. Roj-Rojewski et al. 
Biomass and Bioenergy 122, pp. 126-132. 
DOI: https://doi.org/10.1016/j.biombioe.2019.01.038  | Published online: Jan 31, 2019
 
Phytoremediation potential and control of Phragmites australis as a green phytomass: an overview
S. Rezania et al. 
Environmental Science and Pollution Research, forthcoming issue
DOI: https://doi.org/10.1007/s11356-019-04300-4 | Published online: Jan 28, 2019
 
Species diversity and functional prediction of soil bacterial communities in constructed wetlands with different plant conditions
Fu et al. 
Current Microbiology 76(3), pp. 338-345. 
DOI: https://doi.org/10.1007/s00284-019-01634-7 | Published online: Jan 24, 2019
 
Root and shoot biomass growth of constructed floating wetlands plants in saline environments
O. Sanicola et al. 
Enviornmental Research and Public Health 16(2), p 275. 
DOI: https://doi.org/10.3390/ijerph16020275  | Published online: Jan 18, 2019
 
Enhancement of rhizocompetence in pathogenic bacteria removal of a constructed wetland system
M.B. Saad et al. 
Water Science and Technology 28
DOI: https://doi.org/10.2166/wst.2019.028  | Published online: Jan 18, 2019
 
Slashing Phragmites (Phragmites australis) prior to planting does not promote native vegetation establishment
J. Greet and E. King
Ecological Management & Restoration, forthcoming issue
DOI: https://doi.org/10.1111/emr.12354 | Published online: Jan 13, 2018
 
Does hybrid Phragmites australis differ from native and introduced lineages in reproductive, genetic, and morphological traits?
J. Williams et al. 
Botany, forthcoming issue 
DOI: https://doi.org/10.1002/ajb2.1217 | Published online: Jan 11, 2019
 
Across‐shore differences in lake benthic invertebrate communities within reed stands (Phragmites australis (Cav.) Trin. ex Steud.)
O. Miller et al. 
International Review of Hydrobiology 103(5-6), pp. 99-112. 
DOI: https://doi.org/10.1002/iroh.201801955 | Published online: Jan 11, 2019
 
Large-scale remediation of oil-contaminated water using floating treatment wetlands
M. Azfal et al. 
npj Clean Water 2(3).  
DOI: https://doi.org/10.1038/s41545-018-0025-7 | Published online: Jan 10, 2019
 
Effects of plant diversity on carbon dioxide emissions and carbon removal in laboratory-scale constructed wetland
H. Sun et al. 
Environmental Science and Pollution Research 26(5), pp. 5076-5082. 
DOI: https://doi.org/10.1007/s11356-018-3988-5 | Published online: Jan 3, 2019
 
Short-term impacts of Phragmites management on nutrient budgets and plant communities in Great Lakes coastal freshwater marshes
K.E. Judd and S.N. Francoeur
Wetlands Ecology and Management, forthcoming issue
DOI: https://doi.org/10.1007/s11273-018-9643-6 |  Published online: Dec 18, 2018
 
Effects of elevated temperature and carbon dioxide concentrations on the response of two Common Reed (Phragmites australis) haplotypes to glyphosate
C.M. Prince et al. 
Invasive Plant Science and Management 11(4), pp. 181-190. 
DOI: https://doi.org/10.1017/inp.2018.25 | Published online: Dec 11, 2018
 
Root endophytes and invasiveness: no difference between native and non‐native Phragmites in the Great Lakes Region
W.A. Bickford et al. 
Ecosphere 9(12)
DOI: https://doi.org/10.1002/ecs2.2526 | Published online: Dec 10, 2018
 
Does the genetic variability of Phragmites australis (Cav.) Trin. ex Steud determine the spatial distribution of the species?
D. Swierk et al.  
Oceanographical and Hydrobiological Studies
DOI: https://doi.org/10.1515/ohs-2018-0038 | Published online: Dec 3, 2018
 
Effective phosphorous reduction by a riparian plant buffer zone enhanced with a limestone-based barrier
W. Fratczak et al. 
Ecological Engineering 130, pp. 94-100. 
DOI: https://doi.org/10.1016/j.ecoleng.2019.01.015 | Published online Feb 14, 2019
 
Using unmanned aerial vehicles for vegetation mapping and identification of botanical species in wetlands
A. Bertacchi et al.  
Landscape and Ecological Engineering, forthcoming issue
DOI: https://doi.org/10.1007/s11355-018-00368-1 | Published online Feb 11, 2019
 
Elemental composition and fungal colonisation of decomposing Phragmites australis (Cav.) Trin. ex Steud. litter at different water regimes
M. Likar et al. 
Acta Biological Slovenica 61(2), pp. 71-84. 
Link | Published online Feb 11, 2019
 
Physiology of a plant invasion: biomass production, growth and tissue chemistry of invasive and native Phragmites australis populations
P. Pysek et al.  
Preslia 91, 51-2019
DOI: https://doi.org/10.23855/preslia.2019.051 | Published online: Feb 11, 2019
 
Sediment phosphorus release in response to flood event across different land covers in a restored wetland
C. Peng et al. 
Environmental Science and Pollution Research, forthcoming issue. 
DOI: https://doi.org/10.1007/s11356-019-04398-6| Published online Feb 4, 2019
 
Isolation and characterization of a halotolerant, hydrocarbon-degrading endophytic bacterium from halobiotic reeds (Phragmites australis) growing in petroleum-contaminated soil
W. Tao et al. 
Science of Advanced Materials 11(2), pp. 189-195. 
DOI: https://doi.org/10.1166/sam.2019.3438 |  Published online: Feb 1, 2019. 
 
Anaerobic digestion of wetland biomass from conservation management for biogas production
S. Roj-Rojewski et al. 
Biomass and Bioenergy 122, pp. 126-132. 
DOI: https://doi.org/10.1016/j.biombioe.2019.01.038  | Published online: Jan 31, 2019
 
Phytoremediation potential and control of Phragmites australis as a green phytomass: an overview
S. Rezania et al. 
Environmental Science and Pollution Research, forthcoming issue
DOI: https://doi.org/10.1007/s11356-019-04300-4 | Published online: Jan 28, 2019
 
Species diversity and functional prediction of soil bacterial communities in constructed wetlands with different plant conditions
Fu et al. 
Current Microbiology 76(3), pp. 338-345. 
DOI: https://doi.org/10.1007/s00284-019-01634-7 | Published online: Jan 24, 2019
 
Root and shoot biomass growth of constructed floating wetlands plants in saline environments
O. Sanicola et al. 
Enviornmental Research and Public Health 16(2), p 275. 
DOI: https://doi.org/10.3390/ijerph16020275  | Published online: Jan 18, 2019
 
Enhancement of rhizocompetence in pathogenic bacteria removal of a constructed wetland system
M.B. Saad et al. 
Water Science and Technology 28
DOI: https://doi.org/10.2166/wst.2019.028  | Published online: Jan 18, 2019
 
Slashing Phragmites (Phragmites australis) prior to planting does not promote native vegetation establishment
J. Greet and E. King
Ecological Management & Restoration, forthcoming issue
DOI: https://doi.org/10.1111/emr.12354 | Published online: Jan 13, 2018
 
Does hybrid Phragmites australis differ from native and introduced lineages in reproductive, genetic, and morphological traits?
J. Williams et al. 
Botany, forthcoming issue 
DOI: https://doi.org/10.1002/ajb2.1217 | Published online: Jan 11, 2019
 
Across‐shore differences in lake benthic invertebrate communities within reed stands (Phragmites australis (Cav.) Trin. ex Steud.)
O. Miller et al. 
International Review of Hydrobiology 103(5-6), pp. 99-112. 
DOI: https://doi.org/10.1002/iroh.201801955 | Published online: Jan 11, 2019
 
Large-scale remediation of oil-contaminated water using floating treatment wetlands
M. Azfal et al. 
npj Clean Water 2(3).  
DOI: https://doi.org/10.1038/s41545-018-0025-7 | Published online: Jan 10, 2019
 
Effects of plant diversity on carbon dioxide emissions and carbon removal in laboratory-scale constructed wetland
H. Sun et al. 
Environmental Science and Pollution Research 26(5), pp. 5076-5082. 
DOI: https://doi.org/10.1007/s11356-018-3988-5 | Published online: Jan 3, 2019
 
Short-term impacts of Phragmites management on nutrient budgets and plant communities in Great Lakes coastal freshwater marshes
K.E. Judd and S.N. Francoeur
Wetlands Ecology and Management, forthcoming issue
DOI: https://doi.org/10.1007/s11273-018-9643-6 |  Published online: Dec 18, 2018
 
Effects of elevated temperature and carbon dioxide concentrations on the response of two Common Reed (Phragmites australis) haplotypes to glyphosate
C.M. Prince et al. 
Invasive Plant Science and Management 11(4), pp. 181-190. 
DOI: https://doi.org/10.1017/inp.2018.25 | Published online: Dec 11, 2018
 
Root endophytes and invasiveness: no difference between native and non‐native Phragmites in the Great Lakes Region
W.A. Bickford et al. 
Ecosphere 9(12)
DOI: https://doi.org/10.1002/ecs2.2526 | Published online: Dec 10, 2018
 
Does the genetic variability of Phragmites australis (Cav.) Trin. ex Steud determine the spatial distribution of the species?
D. Swierk et al.  
Oceanographical and Hydrobiological Studies
DOI: https://doi.org/10.1515/ohs-2018-0038 | Published online: Dec 3, 2018
 
Native plant recovery following three years of Common Reed (Phragmites australis) control
CL Zimmerman et al. 
Invasive Plant Science and Management, forthcoming issue
DOI: https://doi.org/10.1017/inp.2018.24 | Published online Nov 22, 2018
 
Soil factors determining the distribution of Phragmites australis and Phacerlurus latifolius in upper tidal zone 
BE Nam et al. 
Journal of Ecology and Environment, forthcoming issue
DOI: https://doi.org/10.1186/s41610-018-0086-z | Published online Nov 16, 2018
 
Provenance of invaders has scale-dependent impacts in a changing wetland ecosystem
KL Amatangelo et al. 
NeoBiota 40, 51-72.
DOI: https://doi.org/10.3897/neobiota.40.28914 | Nov 20, 2018
 
Phyllobacterium phragmitis sp. nov., an endophytic bacterium isolated from Phragmites australis rhizome in Kumtag Desert
L Liang et al. 
Antonie van Leeuwenhoek, forthcoming issue
DOI: https://doi.org/10.1007/s10482-018-1195-5 | Published online: Nov 13, 2018
 
High grazing pressure of geese threatens conservation and restoration of reed belts
ES Bakker et al. 
Frontiers in Plant Science, forthcoming issue
DOI: https://doi.org/10.3389/fpls.2018.01649 | Published online: Nov 12, 2018
 
Why has Phragmites australis persisted in the increasingly saline Gippsland Lakes? A test of three competing hypotheses
PI Boon et al. 
Marine and Freshwater Research, forthcoming issue
DOI: https://doi.org/10.1071/MF18145 | Published online: Nov 9, 2018
 
Comparative study of epiphytic algal communities on Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steud in the shallow Gala Lake (European Part of Turkey)
Öterler Burak
Journal of Oceanography and Limnology 36(5), pp 1615-1628.
DOI: https://doi.org/10.1007/s00343-018-7128-3 | Published online: Nov 9, 2018
 
Estimating the Aboveground Biomass of Phragmites australis (Common Reed) Based on Multi-Source Data
Yingkun Du et al. 
 IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium
URL  | Published online: Nov 5, 2018
 
Decomposition of Standing Litter Biomass in Newly Constructed Wetlands Associated with Direct Effects of Sediment and Water Characteristics and the Composition and Activity of the Decomposer Community Using Phragmites australis as a Single Standard Substrate
CC Overbeek et al. 
Wetlands, forthcoming issue 
DOI: https://doi.org/10.1007/s13157-018-1081-y | Published online: Oct 30, 2018
 
Grazer deterrence and fungal inhibition by the invasive marsh grass Phragmites australis and the native sedge Bolboschoenus robustus in a mesohaline marsh
CE Kicklighter et al. 
Chemoecology 28(6), pp 163-172. 
DOI: https://doi.org/10.1007/s00049-018-0269-1 | Published online: Oct 26, 2018
 
Efficacy of glyphosate and fluazifop-P-butyl herbicides with adjuvants at different levels of cutting for the common reed (Phragmites australis)
AI El-Tokhy
Journal of Plant Protection Research 58(3), pp 282-288. 
DOI: https://doi.org/10.24425/jppr.2018.124636 | Published online: Oct 10, 2018
 
Biosorption of mercury by Reed (Phragmites australis) as a Potential clean water technology
PC Soto-Ríos et al. 
Water, Air & Soil Conservation 229(328)
DOI: https://doi.org/10.1007/s11270-018-3978-8 | Sept 25, 2018
 
Detecting the effects of biological invasion and subsequent control efforts on wetland ecological processes
S Yuckin
Graduate thesis – University of Waterloo
URL| Sept 21, 2018
 
Slope and soil nutrients can explain the distribution of Phragmites australis and Phragmites japonica in riparian wetlands
HJ Park et al. 
River Research and Applications, forthcoming issue 
DOI: https://doi.org/10.1002/rra.3350 | Published online: Aug 29, 2018
 
Impacts of Phragmites australis management on wetland plant community recovery, seedbank composition, and the physical environment in the Chesapeake Bay
Eric L. G. Hazelton
Utah State University Doctoral thesis
URL | Awarded August 2018
 
Invasive Phragmites australis management in Great Salt Lake wetlands: Context dependency and scale effects on vegetation and seed banks
Christine B. Rohal
Utah State University Doctoral thesis
URL | Awarded August 2018
 
Investigating the temporal and spatial variability of flow and salinity levels in an ungaged watershed for ecological benefits:A case study of the Mentor Marsh watershed
Hari Dhungel
Youngstown State University Masters thesis
URL | Awarded August 2018
 
Slope and soil nutrients can explain the distribution of Phragmites australis and Phragmites japonica in riparian wetlands
Hyun Jun Park,  Bo Eun Nam, et al. 
River Research and Applications, forthcoming issue
DOI: https://doi.org/10.1002/rra.3350 | Published online: August 29, 2108
 
Genetic survey on a reed-bed in Central Italy showing early die-back symptoms
Edoardo Sarti, Lorenzo Lastrucci, Daniela Gigante and Andrea Coppi
Biologia 73(8)
DOI: https://doi.org/10.2478/s11756-018-0096-4 | Published online: August 6, 2018
 
Effects of Phragmites management on the ecology of a wetland
Amy Krzton-Presson, Brett Davis, et al. 
Northeastern Naturalist, forthcoming issue 
DOI: http://www.bioone.org/doi/10.1656/045.025.0308 | Published online: June 2018
[Was not included in the May-June edition of this newsletter]
 
Morphological and anatomical changes of Phragmites australis Cav. due to the uptake and accumulation of heavy metals from polluted soils
Minkina et al. 
Science of the Total Environment 636
DOI: https://doi.org/10.1016/j.scitotenv.2018.04.306 | Published online: April 27, 2018. 
 
Complementary responses of morphology and physiology enhance the stand‐scale production of a model invasive species under elevated CO2 and nitrogen
Thomas J. Mozder and Joshua S. Caplan
Functional Ecology, forthcoming issue
DOI: https://doi.org/10.1111/1365-2435.13106 | Published online: April 25, 2018 
 
The effect of water velocity on nitrate removal in vegetated waterways
Giuseppe Castaldelli, Vassilis Aschonitis, Fabio Vincenzi, Elisa Anna Fano, and Elisa Soana
Journal of Environmental Management 215, 230-238. 
DOI: https://doi.org/10.1016/j.jenvman.2018.03.071 | Published online: April 2, 2018. 
 
Nitrogen uptake kinetics and saltmarsh plant responses to global change
Grace M. Cott, Joshua S. Caplan and Thomas J. Mozdzer
Scientific Reports 8 (5393)
DOI: https://doi.org/10.1038/s41598-018-23349-8  | Published online: March 29, 2018
 
Mapping freshwater marsh species in the wetlands of Lake Okeechobee using very high-resolution aerial photography and lidar data
Caiyun Zhangg, Sara Denka and Deepak R. Mishra
International Journal of Remote Sensing, forthcoming issue
DOI: https://doi.org/10.1080/01431161.2018.1455242 | Published online: March 27, 2018
 
AFLP Approach Reveals Variability in Phragmites australis: Implications for Its Die-Back and Evidence for Genotoxic Effects
Andrea Coppi, Lorenzo Lastrucci, David Cappelletti, et al.
Frontiers in Plant Science, forthcoming issue
DOI: https://doi.org/10.3389/fpls.2018.00386 | Published online: March 26, 2018
 
Impacts of Phragmites australis Invasion on Soil Enzyme Activities and Microbial Abundance of Tidal Marshes
Sunghyun Kim, Jiyoung Kang, J. Patrick Megonigal, Hojeong Kang, Jooyoung Seo and Weixin Ding
Soil Microbiology, forthcoming issue
DOI: https://doi.org/10.1007/s00248-018-1168-2 | Published online: March 14, 2018. 
 
Fungal Disease Prevention in Seedlings of Rice (Oryza sativa) and Other Grasses by Growth-Promoting Seed-Associated Endophytic Bacteria from Invasive Phragmites australis
Satish K. Verma, Kathryn L. Kingsley, Marshall S. Bergen, Kurt P. Kowalski and James F. White
Microorganisms 6(1)
DOI: https://doi.org/10.3390/microorganisms6010021 | Published online: March 8, 2018. 
 
Effects of European common reed on Blanding’s turtle spatial ecology
Chantel E. Markle and Patricia Chow-Fraser
Journal of Wildlife Management, forthcomingg issue
DOI: https://doi.org/10.1002/jwmg.21435 | Published online: March 7, 2018
 
Morphological responses to competition modulated by abiotic factors in two monoculture-forming wetland plants
Alexander D. Ameen, Alexander S.Kolker, Caz M.Taylora
Aquatic Botany 147, 61-67. 
DOI: https://doi.org/10.1016/j.aquabot.2018.03.003  | Published online: March 2018
 
Grasses as appropriate targets in weed biocontrol: is the common reed, Phragmites australis, an anomaly?
Richard A. Casagrande, Patrick Häfliger, Hariet L. Hinz, Lisa Tewksbury, Bernd Blossey
Biocontrol, forthcoming issue. 
DOI: https://doi.org/10.1007/s10526-018-9871-y| Published online: Feb 20, 2018
 
Taxonomic structure and function of seed-inhabiting bacterial microbiota from common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia L.)
Ting Gao and Xian-Yang Shi
Archives of Microbiology, forthcoming issue
DOI: https://doi.org/10.1007/s00203-018-1493-3 | Published online, Feb 17, 2018
 
Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration
Chantel E. Markle, Gillian Chow-Fraser, Patricia Chow-Fraser 
PLoS ONE 13(2)
DOI: https://doi.org/10.1371/journal.pone.0192134 | Published online: Feb 14, 2018
 
The influence of an invasive plant on denitrification in an urban wetland
Sarah S. Roley, Michael R. Grace, Perran L.M. Cook
Freshwater Biology
DOI: https://doi.org/10.1111/fwb.13073 | Published online: Feb 8, 2018
 
 
Disease protection and allelopathic interactions of seed-transmitted endophytic pseudomonads of invasive reed grass (Phragmites australis)
James F. White & Kathryn I. Kingsley & Kurt P. Kowalski & Ivelisse Irizarry & April Micci & Marcos A. Soares & Marshall S. Bergen
Plant Soil (2018) 422:195–208
DOI: https://doi.org/10.1007/s11104-016-3169-6 | Published online: Jan 9, 2018 (included here because it did not appear in the Dec-Jan edition)
 
Living in two worlds: Evolutionary mechanisms act differently in the native and introduced ranges of an invasive plant
Wen-Yong Guo, Carla Lambertini, Petr Pysek, Laura A Meyerson, Hans Brix
Ecology and Evolution, forthcoming issue. 
DOI: http://dx.doi.org/10.1002/ece3.3869 | Published online: Jan 29, 2018. 
 
Salinity and Inundation Tolerance of Phragmites australis ssp. americanus: A Greenhouse Experiment and Field Study on a Tributary of the Chesapeake Bay
Diane E Leason and Andrew H Baldwin
Thesis, University of Maryland
DOI: https://doi.org/10.13016/M2154DQ8F | Published online: Jan 25, 2018
 
Geographic variation in apparent competition between native and invasive Phragmites australis
Ganesh P Bhattarai, Laura A Meyerson, James T Cronin
Ecology 98(2)
DOI: https://doi.org/10.1002/ecy.1646 | Published online: Jan 13, 2018
 
Small genome separates native and invasive populations in an ecologically important cosmopolitan grass
Petr Pysek et al. 
Ecology 99(1), PP. 79-90. 
DOI: https://doi.org/10.1002/ecy.2068 | Published online: Jan 4, 2018. 
 
Identification of native and invasive subspecies of common reed (Phragmites australis) in Alberta, Canada, by RNase-H-dependent PCR
Krista Zuzak, Yalong Yang, Nicole Kimmel, Michael Harding, David Feindel, Jie Feng
Botany 96(2), pp. 145-150. 
DOI: https://doi.org/10.1139/cjb-2017-0152| Published online: Nov 27, 2017 (included here because it did not appear in the November Research Round-Up)
 
Identification of native and invasive subspecies of common reed (Phragmites australis) in Alberta, Canada by RNase H-dependent PCR
Krista Zuzak, Yalong Yang, Nicole Kimmel, Michael Harding, David Feindel, Jie Feng
Botany, forthcoming issue
DOI: https://doi.org/10.1139/cjb-2017-0152 | Published online: Nov 27, 17
 
Surveying managers to inform a regionally relevant invasive Phragmites australis control research program
CB Rohal, KM Kettenring, K Sims, ELG Hazelton, Z Ma
Journal of Environmental Management 206, pp. 807-816
DOI: https://doi.org/10.1016/j.jenvman.2017.10.049 | Published online: Nov 25, 17
 
Biominerals and waxes of Calamagrostis epigejos and Phragmites australis leaves from post-industrial habitats
Ewa Talik, Adam Guzik, Eugeniusz Małkowski, Gabriela Woźniak, Edyta Sierka
Protoplasma, forthcoming issue
DOI: https://doi.org/10.1007/s00709-017-1179-8 | Published online: Nov 16, 17
 
Unraveling the effects of arbuscular mycorrhizal fungus on uptake, translocation, and distribution of cadmium in Phragmites australis (Cav.) Trin. ex Steud
X Huang, L Wang, S Zhu, S Ho, J Wu, PK Kalita, F Ma
Ecotoxicology and Environmental Safety 149, pp 43-50
DOI: https://doi.org/10.1016/j.ecoenv.2017.11.011 | Published online: Nov 14, 17
 
Nitrogen species coupled with transpiration enhance Fe plaque assisted aquatic uranium removal via rhizofiltration of Phragmites australis Trin ex Steud
Weiqing Wang and E. Gert Dudel
Journal of Environmental Radioactivity 181
DOI: https://doi.org/10.1016/j.jenvrad.2017.11.011 | Published online: Nov 14, 17
 
Probabilistic neural network and wavelet transform for mapping of Phragmites australis using low altitude remote sensing
L Casagrande, GM Machado et al. 
Institute of Electrical and Electronics Engineers (IEEE Xplore)
DOI: https://doi.org/10.1109/SIBGRAPI.2017.42 | Presented at conference: Oct 20, 2017
 
Cosmopolitan species as ecophysiological models for responses to global change: the common reed Phragmites australis
F Eller, H Skalova, JS Caplan, et al. 
Frontiers in Ecology, forthcoming issue
Article link  | Published online: Oct 10, 2017
 
Influences of different halophyte vegetation on soil microbial community at temperate salt marsh
DR Chaudhary, J Kim, H Kang
Microbial Ecology, forthcoming issue
DOI: https://doi.org/10.1007/s00248-017-1083-y  | Published online: Oct 6, 2017
 
Impacts of Phragmites australis on Diamondback Terrapin nesting in Chesapeake Bay
CE Cook, AM McCluskey and RM Chambers
Estuaries and Coasts forthcoming issue
DOI: https://doi.org/10.1007/s12237-017-0325-z  | Published online: Oct 5, 2017
 
Phragmites removal increases property values in Michigan’s Lower Grand River watershed
P Isley, EE Nordman, S Howard, R  Bowman
Journal of Ocean and Coastal Economics 4(1)
DOI: https://doi.org/10.15351/2373-8456.1076  | Published online: Oct 3, 2017
 
Landscape-level strategies for conservation of imperiled freshwater turtles
*Ed Note: while not specifically focused on Phragmites, this paper provides quantitative evidence of its negative effects habitat availabilty.
CE Markle
McMaster University graduate thesis
URI: http://hdl.handle.net/11375/22077  | Published online: Oct 2017
 
Valuation of Biomaterial: Phragmites australis in the Retention of Metal-Complexed Dyes
Aida Kesraoui, Asma Mabrouk and Mongi Seffen
American Journal of Environmental Sciences 13(3)
DOI: http://doi.org/10.3844/ajessp.2017.266.276 | Published online: 28 Sept 2017
 
Spatial and Temporal Variation in Brackish Wetland Seedbanks: Implications for Wetland Restoration Following Phragmites Control
Eric L. G. Hazelton, Rebekah Downard, Karin M. Kettenring, Melissa K. McCormick, Dennis F. Whigham
Estuaries and Coasts, forthcoming issue
DOI: http://dx.doi.org/10.1080/02705060.2017.1358677 | Published online: Sept 25, 2017
 
Phenotypic Variation Among Invasive Phragmites australis Populations Does Not Influence Salinity Tolerance
Forest R. Schenck, Torrance C. Hanley, R. Edward Beighley, A. Randall Hughes
Estuaries and Coasts, forthcoming issue
DOI: https://doi.org/10.1007/s12237-017-0318-y | Published online: 18 Sept 2017
 
Responses of plant species diversity and soil physical-chemical-microbial properties to Phragmites australis invasion along a density gradient
MD Nazim Uddin and Randall William Robinson
Scientific Reports 7
DOI: https://doi.org/10.1038/s41598-017-11205-0 | Published online: 8 Sept 2017
 
Growth and physiology responses of Phragmites australis to combined drought-flooding condition in inland saline-alkaline marsh, Northeast China
Bolong Wen, Xiaoyu Li, Fei Yang, Xinrui Lu, Xiujun Li, Fuyi Yang
Ecological Engineering 108(A)
DOI: https://doi.org/10.1016/j.ecoleng.2017.08.036 | Published online: 6 Sept 2017
 
Lineage overwhelms environmental conditions in determining rhizosphere bacterial community structure in a cosmopolitan invasive plant
Jennifer L. Bowen, Patrick J. Kearns, Jarrett E. K. Byrnes, Sara Wigginton, Warwick J. Allen, Michael Greenwood, Khang Tran, Jennifer Yu, James T. Cronin, Laura A. Meyerson
Nature Communications, forthcoming issue
DOI: http://dx.doi.org/10.1038/s41467-017-00626-0 | Published online: 5 Sept 2017
 
Vegetation recovery in an oil-impacted and burned Phragmites australis tidal freshwater marsh
Scott Zengel, Jennifer Weaver, Susan Wilder, et al.  
Science of the Total Environment 612
DOI: https://doi.org/10.1016/j.scitotenv.2017.08.221 | Published online: 1 Sept 2017
 
Common reed (Phragmites australis) gall as the limiting nesting resource of rare wetland bees and wasps (Hymenoptera: Aculeata & Evanioidea) in Central Europe
Petr Heneberg, Petr Bogusch, Pavlína Tauchmanová, Milan Řezáč, Alena Astapenková
Ecological Engineering 108(A)
DOI: https://doi.org/10.1016/j.ecoleng.2017.08.014 | Published online: 1 Sept 2017
 
Effects of Warming on Invasive Phragmites australis and Native Spartina patens Seed Germination Rates and Implications for Response to Climate Change
Rose M. Martin
Northeastern Naturalist 24(3)
DOI: https://doi.org/10.1656/045.024.0301 | Published online: Sept 2017
 
Vertical distribution characteristics of photosynthetic parameters for Phragmites australis in Liaohe River Delta wetland, China
Wenying Yu, Ruipeng Ji, Qingyu Jia, Rui Feng, Jinwen Wu, Yushu Zhang
Journal of Freshwater Ecology 32(1), pp 557-573
DOI: http://dx.doi.org/10.1080/02705060.2017.1358677 | Published online: 22 Aug 2017
 
Effect of harvest time and frequency on biomass quality and biomethane potential of Common Reed (Phragmites australis) under paludiculture conditions
Federico Dragoni, Vittoria Giannini, Giorgio Ragaglini, Enrico Bonari, Nicola Silvestri
BioEnergy Research
DOI: https://doi.org/10.1007/s12155-017-9866-z | Published online: 20 Aug 2017
 
Metabolism of carbamazepine in plant roots and endophytic rhizobacteria isolated from Phragmites australis
Andrés Sauvêtre, Robert May, Rudolf Harpaintner, Charlotte Poschenrieder, Peter Schröder
Journal Hazardous Materials 342(15), pp 85-95
DOI: https://doi.org/10.1016/j.jhazmat.2017.08.006 | Published online: 9 Aug 2017
 
Native and non-native halophytes resiliency against sea-level rise and saltwater intrusion
Lian Xue, Ziuzhen Li, Zhongzheng Yan, Qian Zhang, Wenhui Ding et al. 
Hydrobiologia
DOI: https://doi.org/10.1007/s10750-017-3333-x | Published online: 9 Aug 2017
 
Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis
Xiaochen Huang, Shishu Zhu, Shih-Hsin Ho, Li Wang, Fang Ma
Chemosphere
DOI: https://doi.org/10.1016/j.chemosphere.2017.08.021 | Published online: 8 Aug 2017
 
Changes associated with Phragmites australis invasion in plant community and soil properties: A study on three invaded communities in a wetland, Victoria, Australia
Md N. Uddin, Randall W. Robinson
Limnologica – Ecology and Management of Inland Waters
DOI: https://doi.org/10.1016/j.limno.2017.07.006 | Published online: 2 Aug 2017
 
Mapping the change of Phragmites australis live biomass in the lower Mississippi River Delta marshes
Elijah W. Ramsey and Amina Rangoonwala
US Geological Survey, 2017-1098
DOI: https://doi.org/10.3133/ofr20171098 | Published online: 28 July 2017
 
Prioritizing Management of the Invasive Grass Common Reed (Phragmites australis) in Great Salt Lake Wetlands
A. Lexine Long, Karin M. Kettenring and Richard Toth
Invasive Plant Science and Management 10(2)
DOI: https://doi.org/10.1017/inp.2017.20 | Published online: 27 July 2017
 
Demographic and macro-morphological evidence for common reed dieback in central Italy
Lorenzo Lastrucci, Lorenzo Lazzaro, Andrea Coppi, Bruno Foggi, Francesco Ferranti, Roberto Venanzoni
Plant Ecology and Diversity
DOI: http://dx.doi.org/10.1080/17550874.2017.1351499 | Published online: 26 July 2017
 
Management of invasive Phragmites australis in the Adirondacks: a cautionary tale about prospects of eradication
Brendan Quirion, Zachary. Simek, Andrea Dávalos, Bernd Blossey
Biological Invasions
DOI: 10.1007/s10530-017-1513-2 | Published online: 17 July 2017
 
Characterizing Past and Modelling Future Spread of Phragmites australis ssp. australis at Long Point Peninsula, Ontario, Canada
Jennifer A. Jung, Daniel Rokitnicki-Wojcik, Jonathan D. Midwood
Wetlands
DOI: https://doi.org/10.1007/s13157-017-0931-3 | Published online: 16 July 2017
 
The response of Phragmites to fluctuating subsurface water levels in constructed stormwater management systems
Hans Martin Hanslin, Trond Maehlum, Arne Saebo
Ecological Engineering
DOI: https://doi.org/10.1016/j.ecoleng.2017.06.019 | Published online: 14 July 2017
 
Claviceps arundinis identification and its role in the die-back syndrome of Phragmites australispopulations in central Italy
M. Cerri, L. Reale, C. Moretti, R. Buonaurio, A. Coppi, V. Ferri et al. 
Plant Biosystems
DOI: http://dx.doi.org/10.1080/11263504.2017.1347111 | Published online: 13 July 2017