Published Phragmites Research 

 

See below for published papers on Phragmites. These papers were collected in our regular Research Round-Up – a digest of academic papers published in the previous month(s). Sign up for the newsletter here! 

To search the papers listed below, click the search bar in the table header below and then type in a keyword, author, journal, or year you are looking for. You can also visit the archived Research Round-Ups here. Need help? Contact us! 

TitleAuthorPublicationLinkDatePaywall (pay for access, or by organization affiliation)Tags/Keywords
Scale insect infestation of Phragmites australis in the
Mississippi River delta, USA: Do fungal microbiomes play a role?
Caitlin R. BumbyTulane Universityhttps://search.proquest.com/openview/4b18095455ad1208292822c5b3c60fa8/1?pq-origsite=gscholar&cbl=18750&diss=y2020NoFungal microbes, scale, herbivory
Response of a Wetland Plant Community to Management of Phragmities Australis (Poaceae) in Southwestern ConnecticutEdward K. Faison, Geordie Elkins, Kathleen Kitka, David R. FosterRhodora  https://doi.org/10.3119/19-052020YesBiodiversity, Wetland, Community Reponse, Removal
Combined effect of herbivory and salinity stress on the common reed, Phragmites australisJennifer Soukup University of Rhode Islandhttps://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=2878&context=theses2020NoSalinity, herbivory, biomass, sucrose
Lineage and latitudinal variation in Phragmites australis tolerance to herbivory: implications for invasion successJordan R. Croy, Laura A. Meyerson, Warwick J. Allen, Ganesh P. Bhattarai, James T. CroninOikoshttps://doi.org/10.1111/oik.072602020YesBiogeography, Biotic Resistance, Enemy Release, Invasive Plant, Plant Defenses, Tolerance–Resistance Tradeoff
Temporal filters for mapping Phragmites with C-HH SAR dataLori White, Brian Brisco, Kevin Murnaghan, Jon Pasher, Jason DuffeCanadian Journal of Remote Sensinghttps://doi.org/10.1080/07038992.2020.17997702020NoRemote sensing, synthetic aperture radar (SAR), multi-temporal filters
Growth and Behavior of North American Microbes on Phragmites australis LeavesAaron E. DeVries, Kurt P. Kowalski, Wesley A. BickfordMicroorganismshttps://dx.doi.org/10.3390/microorganisms80506902020NoGermination, Invasion, Disease, Barcode, Microbiome, Pathogen, Endophyte
Contribution of plant-induced pressurized flow to CH4 emission from a Phragmites fenMerit van den Berg, Eva van den Elzen, Joachim Ingwersen, Sarian Kosten, Leon P. M. Lamers, Thilo StreckScientific Reportshttps://doi.org/10.1038/s41598-020-69034-72020NoGas transport pathway, methane CH4 oxidation, gas emission
Contrasting Patterns in Diversity and Community Assembly of Phragmites australis Root-Associated Bacterial Communities from Different SeasonsRujia He, Jin Zeng, Dayong Zhao, Rui Huang, Zhongbo Yu, Qinglong L. WuApplied and Environmental Microbiologyhttps://doi.org/10.1128/AEM.00379-202020YesAssembly Processes, Bacterial Community, Common Reed, Endosphere, Rhizosphere
Parasitoids (Hymenoptera: Chalcidoidea) reared from galls of Giraudiella inclusa (Frauenfeld, 1862) (Diptera: Cecidomyiidae) on Phragmites australis in Kent, EnglandM. T. JenningsEntomologist's Monthly Magazinehttps://doi.org/10.31184/M00138908.1563.40382020YesBiodiversity, England, gall, Giraudiella inclusa, parasitoid community, Phragmites
Tidal effects on ecosystem CO2 exchange in a Phragmites salt marsh of an intertidal shoalYing Huang, Zihan Chen, Bo Tian, Cheng Zhou, Jiangtao Wang, Zhenming Ge, Jianwu TangAgricultural and Forest Meteorologyhttps://doi.org/10.1016/j.agrformet.2020.1081082020YesCoastal wetland, tidal effect, eddy-covariance, carbon dioxide flux, meteorological controls
Dark septate endophyte improves salt tolerance of native and invasive lineages of Phragmites australisMartina Gonzalez Mateu, Andrew H. Baldwin, Jude E. Maul, Stephanie A. Yarwood The ISME Journalhttps://doi.org/10.1038/s41396-020-0654-y2020NoFreshwater Ecology, Fungal Ecology, Microbial Ecology, Plant Ecology
Genetic diversity of native and introduced Phragmites (common reed) in Wisconsin Nicholas P. Tippery, Jared D. Pesch, Brandon J. Murphy, Rachel L. BautzmannGeneticahttps://doi.org/10.1007/s10709-020-00098-z2020YesSubspecies, hybridization, genetic variation, allelic diversity
Rooting depth and below ground biomass in a freshwater coastal marsh invaded by European Reed (Phragmites australis) compared with remnant uninvaded sites at Long Point, OntarioCalvin Lei, Sarah J. Yuckin, Rebecca C. RooneyJournal of Soils and Sedimentshttps://dx.doi.org/10.22621/cfn.v133i4.22812020NoBelow Ground Biomass, Coastal Marsh, Common Reed, Ecosystem Effects, Invasive Species, Lake Erie, Rhizomes, Roots, Wetland
Plant Invasions and Microbes: The Interactive Effects of Plant-Associated Microbes on Invasiveness of Phragmites australisWesley BickfordPhD Dissertation, University of Michiganhttps://deepblue.lib.umich.edu/handle/2027.42/1551082020NoInvasive Species, Plant-Soil Feedback, Plant-Microbial Interactions
Evaluating the performance of rope-wick herbicides applicator to control common reedAdnan Hussein Al-Wagaa, Ibraheem Ahmed Hadi Al-Obadui, Hameed A. K. Alfarttoosi, Omar Abdulrazzaq AL-GburiIOP Conf. Ser.: Earth and Environmental Sciencehttps://doi.org/10.1088/1755-1315/388/1/012003%C2%A02019NoHerbicide Treatments, Glyphosate, Fluazifop-Butyl, Control, Application, Rope Wick, Sprayer
When misconceptions impede best practices: evidence supports biological control of invasive PhragmitesBernd Blossey, Stacy B. Endriss, Richard Casagrande, Patrick Häfliger, Hariet Hinz, Andrea Dávalos, Carrie Brown-Lima, Lisa Tewksbury, Robert S. Bourchier Biological Invasions  https://doi.org/10.1007/s10530-019-02166-82019NoBiological Control, Host Specificity, Invasive Plant Species Management, Phragmites
Invasive Phragmites australis management outcomes and native plant recovery are context dependentChristine B. Rohal, Chad Cranney, Eric L. G. Hazelton, Karin M. KettenringEcology and Evolutionhttps://doi.org/10.1002/ece3.58202019NoContingency, Herbicide, Invasive Plant Management, Phragmites Australis, Utah
Vegetation dynamics under water-level fluctuations: Implications for wetland restorationQiang Liu, Jingling Liu, Haifei Liu, Liqiao Liang, YanPeng Cai, Xuan Wang, Chunhui LiJournal of Hydrologyhttps://doi.org/10.1016/j.jhydrol.2019.1244182019Yes Wetland, Water-Level Flucuations, Suitable Water Level, Tvet Model, Shallow Water Level
Fine-scale remobilization of phosphorus by rooted macrophytes (Phragmites australis) growth in lake sediments: evidence from a holistic growth period simulation studyJuhua Yu, Jicheng Zhong, Yushu Zhang, Hong Ding, Chao Chen, Xiangzhou Zheng, Mingxi Xu, Yinlong Zhang Journal of Soils and Sedimentshttps://doi.org/10.1007/s11368-019-02502-42019YesAquatic Macrophytes, Dgt, Eutrophication, Lake Restoration, Phosphorus, Sediment
Macrophyte cover type and groundwater as the key drivers of the extremely high organic carbon concentration of soda pansEmil Boros, Katalin V.-Balogh, Bianka Csitári, Lajos Vörös, Anna SzékelyFreshwater Biologyhttps://doi.org/10.31223/osf.io/849hc2019NoDom, Emergent Macrophyte, Groundwater Effect, High Ph, Interannual Variability
Control of Invasive Phragmites Increases Marsh Birds but not FrogsDouglas C. Tozer, Stuart A. MackenzieCanadian Wildlife Biology & Managementhttp://cwbm.name/control-of-invasive-phragmites-increases-marsh-birds-but-not-frogs/2019NoCommon Reed, Frog Abundance, Great Lakes, Herbicide, Invasive Species, Marsh Birds, Phragmites Australis Australis, Wetland
Cattle grazing for invasive Phragmites australis (common reed) management in Northern Utah wetlandsBrittany L. Duncan, Rich Hansen, Keith Hambrecht, Chad Cranney, Jennifer J. Follstad Shah, Kari E. Veblen, Karin M. KettenringUtah State University Extension Fact Sheethttps://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=3038&context=extension_curall2019NoCattle Grazing, Utilization, Management, Control
Shared histories of co-evolution may affect trophic interactions in a freshwater community dominated by alien speciesPhillip J. Haubrock, Paride Balzani, Martina Azzini, Alberto F. Inghilesi, Lukáš Veselý, Wei Guo, Elena TricaricoFrontiers in Ecology and Evolutionhttps://doi.org/10.3389/fevo.2019.003552019NoStable Isotopes, Stomach Contents, Community Structure, Mixing Models, Feeding Ecology, Interactions
Sediment microbiomes associated with the rhizosphere of emergent macrophytes in a shallow, subtropical lakeRui Huang, Jin Zeng, Dayong Zhao, Katherine V. Cook, K. David Hambright, Zhongbo YuLimnology and Oceanographyhttps://doi.org/10.1002/lno.113252019NoRhizosphere, Sediment, Microbiome, Bacterial Communities, Macrophyte Roots
Establishment and potential use of woody species in treatment wetlandsZhanna Grebenshchykova, Chloé Frédette, Florent Chazarenc, Yves Comeau, Jacques BrissonInternational Journal of Phytoremediationhttps://doi.org/10.1080/15226514.2019.16587122019YesHerbaceous Species, Plant Selection, Treatment Wetland, Wastewater Treatment, Woody Species
Unravelling the role of vegetation in the attenuation of contaminants of emerging concern from wetland systems: Preliminary results from column studiesAgnès de la Paz, Nèstor Salinas, Víctor MatamorosWater Research 166(1).https://doi.org/10.1016/j.watres.2019.1150312019YesContaminants Of Emerging Concern, Wastewater, Vegetation, Removal, Chemical Signalling, Root Exudates
Arbuscular mycorrhizal fungi effect growth and photosynthesis of Phragmites australis (Cav.) Trin ex. Steudel under copper stressJ.‐T. Wu, L. Wang, L. Zhao, X.‐C. Huang, F. MaPlant Biology.https://doi.org/10.1111/plb.130392019NoArbuscular Mycorrhizal Fungi, Copper, Itraq, Photosynthesis, Phragmites Australis
The independent effects of nutrient enrichment and pulsed nutrient delivery on a common wetland invader and its native conspecificDanielle M. Frevola, Stephen M. Hovick Oecologia 191(2), pp. 447-460https://doi.org/10.1007/s00442-019-04493-y2019YesPhragmites Australis, Invasive Species, Phenotypic Plasticity, Leaf Traits, Anthropogenic Land-Use
Effect of human activities on floristic composition and diversity of desert and urban vegetation in a new urbanized desert ecosystemMahmoud O. Hassan, Yasser M. HassanHeliyon 5(8)https://doi.org/10.1016/j.heliyon.2019.e022832019NoEnvironmental Science, Ecology, Urbanization, Weeds, Florisitic Diversity
Intraspecific facilitation explains the persistence of Phragmites australis in modified coastal wetlandsValérie C. Reijers, Marloes van den Akker, Peter M. J. M. Cruijsen, Leon P. M. Lamers, Tjisse van der HeideECOSPHEREhttps://doi.org/10.1002/ecs2.28422019NoCoastal Wetlands, Habitat Modification, Osmoregulation, Phragmites Australis, Restoration, Self-Reinforcing Feedback, Sulfide Toxicity
Ecosystem functioning of Great Salt Lake wetlandsMaya Cassidy PendletonUtah State University MSc Thesishttps://digitalcommons.usu.edu/etd/75572019NoEcosystem Services, Ecosystem Processes, Multifunctionality, Wetland, Effects
Why are tall-statured energy grasses of polyploid species complexes potentially invasive? A review of their genetic variation patterns and evolutionary plasticityCarla LambertiniBiological Invasions 21(10), pp. 3019-3041.https://doi.org/10.1007/s10530-019-02053-22019YesAdaptation, Dispersal, Gene Flow, Hybridization, Polyploidy, Poplulation Structure, Seeds, Species Complex, Vegetative
Ancient buoyancy devices in Sweden: floats made of reed, club-rush, inflated skins and animal bladdersIsak Lidström, Ingvar SvanbergJournal of Ethnological Studies 57(2), pp. 85-94.https://doi.org/10.1080/04308778.2019.16463902019YesChild Culture, Ethnobiology, Sport History, Physical Eduation, Swimming, Equipment, Traditional Games
Significant increase in nutrient stocks following Phragmites australis invasion of freshwater meadow marsh but not of cattail marshSarah Yuckin, Rebecca RooneyFrontiers in Environmental Science.https://doi.org/10.3389/fenvs.2019.001122019NoCanada Bluejoint, Cattail Marsh, Common Reed, Exotic Species, Invasive Species, Meadow Marsh, Nutrient Retention, Nutrient Stocks
Identification of most spectrally distinguishable phenological stage of invasive Phramites australis in Lake Erie wetlands (Canada) for accurate mapping using multispectral satellite imageryPrabha Amali Rupasinghe, Patricia Chow-FraserWetlands Ecology and Management, 27(4), pp. 513-538.https://doi.org/10.1007/s11273-019-09675-22019YesPhragmites, Wetlands, Multispectral Images, Svm Classification
An analysis of invasive species management in the Niagara Region of Ontario, Canada: establishment of a database to improve knowledge sharingLyn BrownMaster’s thesis, Brock Universityhttps://dr.library.brocku.ca/handle/10464/141642019NoInvasive Species, Database, Ecosystem Approach Principles, Management, Control Techniques
Mapping invasive Phragmites australis in the Old Woman Creek Estuary using UAV remote sensing and machine learning classifiersTharindu Abeysinghe, Anita Simic Milas, Kristin Arend, Breann Hohman, Patrick Reil, Andrew Gregory, Angélica Vázquez-OrtegaRemote Sensing, Volume 11, Issue 11https://doi.org/10.3390/rs111113802019NoPhragmites Australis, Unmanned Aerial Vehicles, Invasive, Machine Learning, Onject-Based Classifiers
Carbon dioxide fluxes of temperate urban wetlands with different restoration historyK.V.R. Schäfer, T. Duman, K. Tomasicchio, R. Tripathee, C. SturtevantAgricultural and Forest Meteorology 275, pp 223-232https://doi.org/10.1016/j.agrformet.2019.05.0262019YesNet Ecosystem Exchange, Wetland Restoration, Urban Temperate Wetland
Evaluating Phragmites australis management: Impacts of herbicide management on plant community composition of Great Lakes coastal wetlandsJake Eugene BonelloMaster’s thesis, Eastern Michigan Universityhttps://search.proquest.com/openview/6f1c5d3635a1430ea1eb45da70d1b9042019NoHerbicide Management, Coastal Wetlans, Great Lakes, Floristic Quality, Diversity
Flow dynamics and turbulence patterns in a drainage channel colonized by common reed (Phragmites australis) under different scenarios of vegetation managementAlessandro Errico, Giuseppe Francesco Cesare Lama, Simona Francalanci, Giovanni Battista Chirico, Luca Solari, Federico PretiEcological Engineering 133, pp. 39-52https://doi.org/10.1016/j.ecoleng.2019.04.0162019YesVegetated Flow, Real Scale Experiment, Turbulent Kinetic Energy, Phragmites Australis, Vegetation Management
Abiotic and landscape factors constrain restoration outcomes across spatial scales of a widespread invasive plantChristine B. Rohal, Chad Cranney, Karin M. KettenringPlant Science 18, 2019https://doi.org/10.3389/fpls.2019.004812019NoSpatial Scale, Phragmites Australis, Management, Invasive Species Control, Restoration, Contigency
Differences in functional traits of leaf blade and culm of common reed in four habitat typesMun Gi Hong, Bo Eun Nam, Jae Geun Kim Journal of Ecology and Environment 43.1, pp 12https://doi.org/10.1186/s41610-019-0113-82019NoLagoon, Montane Fen, Phragmites Australis, Riparian Marsh, Salt Marsh
A review of the ecological effects of European Common Reed (Phragmites australis) on fishes and fish habitat in North AmericaEmillie Elizabeth RoseThe Journal of Student Science and Technology 11.1https://doi.org/10.13034/jsst.v11i1.2942019NoPhragmites, Invasive, Aquatic, Fish, Habitat
Effective phosphorous reduction by a riparian plant buffer zone enhanced with a limestone-based barrierWojciech Frątczak, Dorota Michalska-Hejduk, Maciej Zalewski, Katarzyna IzydorczykEcological Engineering 130, pp. 94-100.https://www.sciencedirect.com/science/article/abs/pii/S09258574193003942019YesPhosphorus Removal,Ca-Rich Materials, Nutrient Uptake, Ecohydrological Biotechnology, Nature-Based Solution
Using unmanned aerial vehicles for vegetation mapping and identification of botanical species in wetlandsAndrea Bertacchi, Vittoria Giannini, Carmelo Di Franco, Nicola Silvestri Landscape and Ecological Engineeringhttps://doi.org/10.1007/s11355-018-00368-12019YesUavs, Aerial Photos, Vegetation Map, Wetland, Phragmites, Myriophyllum, Tuscany
Elemental composition and fungal colonisation of decomposing Phragmites australis (Cav.) Trin. ex Steud. litter at different water regimesMatevž Likar, Nataša Dolinar, Katarina Vogel-Mikuš, Alenka Gaberščik, Marjana RegvarActa Biological Slovenica 61(2), pp. 71-84.http://bijh-s.zrc-sazu.si/ABS/SI/ABS/Cont/61_2/ABS_61_2018_2_splet-71-84.pdf2019NoLitter Decomposition, Fungal Community, Elemental Composition, Intermittent Habitat, Wetland
Physiology of a plant invasion: biomass production, growth and tissue chemistry of invasive and native Phragmites australis populationsPetr Pyšek, Hana Skálová, Jan Čuda, Wen-Yong Guo, Jan Doležal, Ondřej Kauzál, Carla Lambertini, Klára Pyšková, Hans Brix, Laura A. MeyersonPreslia 91, 51-2019https://doi.org/10.23855/preslia.2019.0512019NoBelow- And Aboveground Biomass, Climate, Common Reed, Growth Traits, Intraspecific Differentiation, N And P Concentrations, Photosynthesis, Phragmites Australis, Phylogeography, Physiological Traits, Plant Invasion, Specific Leaf Area
Sediment phosphorus release in response to flood event across different land covers in a restored wetlandChengrong Peng, Yun Zhang, Shun Huang, Xiaoyan Li, Zhicong Wang, Dunhai Li Environmental Science and Pollution Research.https://doi.org/10.1007/s11356-019-04398-62019YesSubmergence, Restored Wetland, Soil Phosphorus Release, Land Cover, Freshwater Lakes
Isolation and characterization of a halotolerant, hydrocarbon-degrading endophytic bacterium from halobiotic reeds (Phragmites australis) growing in petroleum-contaminated soilTao Wu, Jie Xu, Wei-Hua Guo, Jiang-Bao Xia, Xiao-Bin Li, Ren-Qing WangScience of Advanced Materials 11(2), pp. 189-195.https://doi.org/10.1166/sam.2019.34382019Yes Endophytic Bacteria, Halotolerance, Hydrocarbon Biodegradation, Phragmites Australis, Pseudomonas Stutzeri
Anaerobic digestion of wetland biomass from conservation management for biogas productionSławomir Roj-Rojewski, Agnieszka Wysocka-Czubaszek, Robert Czubaszek, Andrzej Kamocki, Piotr BanaszukBiomass and Bioenergy 122, pp. 126-132.https://doi.org/10.1016/j.biombioe.2019.01.0382019YesWetland Biomass, Anaerobic Digestion, Biogas Production, Specific Methane Yield, Harvest Time
Phytoremediation potential and control of Phragmites australis as a green phytomass: an overviewShahabaldin Rezania, Junboum Park, Parveen Fatemeh Rupani, Negisa Darajeh, Xin Xu, Rahim Shahrokhishahraki Environmental Science and Pollution Researchhttps://doi.org/10.1007/s11356-019-04300-42019YesPhragmites Australis, Heavy Metals, Nutrients, Phytoremediation, Soil, Sediment, Value-Added Products
Species diversity and functional prediction of soil bacterial communities in constructed wetlands with different plant conditionsWeiguo Fu, Yuxuan Wang, Wei Wei, Pingping Li Current Microbiology 76(3), pp. 338-345.https://doi.org/10.1007/s00284-019-01634-72019YesSoil Bacteria, Communities, Constructed Wetland, Nitrification
Root and shoot biomass growth of constructed floating wetlands plants in saline environmentsOriana Sanicola, Terry Lucke, Michael Stewart, Katharina Tondera, Christopher WalkerEnviornmental Research and Public Health 16(2), p 275.https://doi.org/10.3390/ijerph160202752019NoConstructed Floating Wetlands, Stormwater Pollution, Plant Biomass
Enhancement of rhizocompetence in pathogenic bacteria removal of a constructed wetland systemMarwa Ben Saad, Myriam Ben Said, Isabel Sanz-Sáez, Olga Sánchez, Jordi Morató, Latifa Bousselmi, Ahmed GhrabiWater Science and Technology 28https://doi.org/10.2166/wst.2019.0282019NoAntagonism, Bioinoculation, Constructed Wetland, Rhizosphere, Wastewater
Slashing Phragmites (Phragmites australis) prior to planting does not promote native vegetation establishmentJoe Greet, Elise KingEcological Management & Restorationhttps://doi.org/10.1111/emr.123542018YesCompetition, Phragmites Australis, Plant Invasions,Reed Slashing, Wetland Forest Restoration, Woody Plant Establishment
Does hybrid Phragmites australis differ from native and introduced lineages in reproductive, genetic, and morphological traits?Jared Williams, Adam M. Lambert, Randy Long, Kristin SaltonstallBotanyhttps://doi.org/10.1002/ajb2.12172019NoCommon Reed, Cryptic Invasion, Ecosystem Management, Genotype, Intraspecific Hybridization, Invasive Species, Lineage, Poaceae
Across‐shore differences in lake benthic invertebrate communities within reed stands (Phragmites australis (Cav.) Trin. ex Steud.)Oliver Miler, Magdalena Czarnecka, Xavier‐François Garcia, Anne Jäger, Martin PuschInternational Review of Hydrobiology 103(5-6), pp. 99-112.https://doi.org/10.1002/iroh.2018019552019YesDiversity, Functional Metrics, Indicator Taxa, Organic Matter, Riverine Lakes
Large-scale remediation of oil-contaminated water using floating treatment wetlandsMuhammad Afzal, Khadeeja Rehman, Ghulam Shabir, Razia Tahseen, Amna Ijaz, Amer J. Hashmat, Hans Brix npj Clean Water 2(3).https://doi.org/10.1038/s41545-018-0025-72019NoBioremediation, Contamination, Hydrocarbon, Water Treatment, Rhizosphere, Bacterial Community
Effects of plant diversity on carbon dioxide emissions and carbon removal in laboratory-scale constructed wetlandHongying Sun, Quanwei Xin, Zhihui Ma, Siren Lan Environmental Science and Pollution Research 26(5), pp. 5076-5082.https://doi.org/10.1007/s11356-018-3988-52019YesCarbon Fixation Rate, Microbial Biomass, Microcosms, Plant Diversity, Plant Species, Species Richness
Short-term impacts of Phragmites management on nutrient budgets and plant communities in Great Lakes coastal freshwater marshesKristin E. Judd, Steven N. FrancoeurWetlands Ecology and Managementhttps://doi.org/10.1007/s11273-018-9643-62018YesGlyphosate, Herbicide, Invasive Species Management, Nutrient Retention, Phragmites Australis, Wetland Ecosystem Services
Effects of elevated temperature and carbon dioxide concentrations on the response of two Common Reed (Phragmites australis) haplotypes to glyphosateCandice M. Prince, Gregory E. MacDonald, John E. Erickson Invasive Plant Science and Management 11(4), pp. 181-190.https://doi.org/10.1017/inp.2018.252018NoRyan M. Wersal, Minnesota State University, Chemical Control, Climate Change, Herbicide, Invasive Species
Root endophytes and invasiveness: no difference between native and non‐native Phragmites in the Great Lakes RegionWesley A. Bickford, Deborah E. Goldberg, Kurt P. Kowalski, Donald R. ZakEcosphere 9(12)https://doi.org/10.1002/ecs2.25262018NoBacteria, Endophytes, Fungi, Invasive Plants, Microbes, Mutualists, Oomycetes, Pathogens, Plant-Microbial Interactions, Roots, Soil Saturation
Does the genetic variability of Phragmites australis (Cav.) Trin. ex Steud determine the spatial distribution of the species?Dariusz Świerk, Michał Krzyżaniak, Tomasz Kosiada, Piotr Urbański, Jolanta Behnke-BorowczykOceanographical and Hydrobiological Studieshttps://doi.org/10.1515/ohs-2018-00382018YesPhragmites Australis, Genetic Variability, Morphological Features, Soil And Bottom Sediment Chemical Content
Native plant recovery following three years of Common Reed (Phragmites australis) controlChristopher L. Zimmerman, Rebecca R. Shirer, Jeffrey D. Corbin Invasive Plant Science and Managementhttps://doi.org/10.1017/inp.2018.242018NoJohn Cardina, Ohio State University, Community Composition, Herbicide, Invasion Control, Hudson River, Monitoring, Restoration, Tidal Wetlands
Soil factors determining the distribution of Phragmites australis and Phacerlurus latifolius in upper tidal zoneBo Eun Nam, Mun Gi Hong, Hyun Jun Park, Jae Geun Kim Journal of Ecology and Environmenthttps://doi.org/10.1186/s41610-018-0086-z2018NoCommon Reed, Halotypes, Redundancy Analysis, Soil Salinity, Tidal Channel
Provenance of invaders has scale-dependent impacts in a changing wetland ecosystemKathryn L. Amatangelo, Lee Stevens, Douglas A. Wilcox, Stephen T. Jackson, Dov F. SaxNeoBiota 40, 51-72.https://doi.org/10.3897/neobiota.40.289142018NoWetland, Invasion, Exotic, Phragmites, Typha, Scale, Richness
Phyllobacterium phragmitis sp. nov., an endophytic bacterium isolated from Phragmites australis rhizome in Kumtag DesertLi-xiong Liang, Qi-wu Sun, Nan Hui, Xiao-xia Zhang, Lu-bin Li, Lei Liu Antonie van Leeuwenhoekhttps://doi.org/10.1007/s10482-018-1195-52018YesPhragmites Australis, Phyllobacterium, Novel Species, Rhizome
High grazing pressure of geese threatens conservation and restoration of reed beltsElisabeth S. Bakker, Ciska G. F. Veen, Gerard J. N. Ter Heerdt, Naomi Huig, Judith M. SarneelFrontiers in Plant Sciencehttps://doi.org/10.3389/fpls.2018.016492018NoAnser Anser, Aquatic Plant, Exclosure, Herbivory, Landscape Configuration, Phragmites Australis, Restoration, Wetland
Why has Phragmites australis persisted in the increasingly saline Gippsland Lakes? A test of three competing hypothesesPaul I. Boon, Doug Frood, Alison Oates, Jim Reside, Neville RosengrenMarine and Freshwater Researchhttps://doi.org/10.1071/MF181452018YesSalinity, Salt Tolerance, Shoreline, Biomass, Australia
Comparative study of epiphytic algal communities on Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steud in the shallow Gala Lake (European Part of Turkey)Öterler BurakJournal of Oceanography and Limnology 36(5), pp 1615-1628.https://link.springer.com/article/10.1007/s00343-018-7128-32018NoCommunity Structure, Epiphytic Algae, Shallow Lake, Typha Latifolia, Phragmites Australis
Estimating the Aboveground Biomass of Phragmites australis (Common Reed) Based on Multi-Source DataYingkun Du, Jing Wang, Yifan Lin, Zhengjun Liu, Haiying Yu, Haiyan Yi IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposiumhttps://doi.org/10.1109/IGARSS.2018.85173042018YesVegetation Mapping, Estimation, Wetlands, Hyperspectral Imaging, Laser Radar, Biomass
Decomposition of Standing Litter Biomass in Newly Constructed Wetlands Associated with Direct Effects of Sediment and Water Characteristics and the Composition and Activity of the Decomposer Community Using Phragmites australis as a Single Standard SubstrateCiska C. Overbeek, Harm G. van der Geest, E. Emiel van Loon, Wim Admiraal Wetlandshttps://doi.org/10.1007/s13157-018-1081-y2018NoPhragmites Australis, Decomposer Community, In Situ Experiment, All-Possible-Subsets Regression
Grazer deterrence and fungal inhibition by the invasive marsh grass Phragmites australis and the native sedge Bolboschoenus robustus in a mesohaline marshC. E. Kicklighter, S. Duca, A. K. S. Jozwick, H. Locke, C. Hundley, B. Hite, G. Hannifin Chemoecology 28(6), pp 163-172.https://doi.org/10.1007/s00049-018-0269-12018YesAntifungal, Estuarine, Plant-Herbivore, Resistance To Herbivory, Wetland
Efficacy of glyphosate and fluazifop-P-butyl herbicides with adjuvants at different levels of cutting for the common reed (Phragmites australis)Ahmed Ibrahim El-TokhyJournal of Plant Protection Research 58(3), pp 282-288.https://doi.org/10.24425/jppr.2018.1246362018NoAdjuvants, Fluazifop-P-Butyl, Glyphosate, Herbicide, Phragmites
Biosorption of mercury by Reed (Phragmites australis) as a Potential clean water technologyPaula Cecilia Soto-Ríos, Marco Antonio León-Romero, Otongtuya Sukhbaatar, Osamu Nishimura Water, Air & Soil Conservation 229(328)https://doi.org/10.1007/s11270-018-3978-82018YesBiosorption, Mercury, Reed
Detecting the effects of biological invasion and subsequent control efforts on wetland ecological processesSarah YuckinGraduate thesis – University of Waterloohttps://hdl.handle.net/10012/138882018NoInvasion, Wetland
Slope and soil nutrients can explain the distribution of Phragmites australis and Phragmites japonica in riparian wetlandsHyun Jun Park, Bo Eun Nam, Mun Gi Hong, Jae Geun KimRiver Research and Applicationshttps://doi.org/10.1002/rra.33502018YesCommon Reed, Correspondence Correlation Analysis, Generalized Linear Model, Niche Separation, Runner Reed, Soil Nutrient
Impacts of Phragmites australis management on wetland plant community recovery, seedbank composition, and the physical environment in the Chesapeake BayEric L. G. HazeltonUtah State University Doctoral thesishttps://digitalcommons.usu.edu/etd/7229/2018NoCommon Reed, Ecological Restoration, Herbicide, Invasive Plant, Invasive Species, Management, Phragmites Australis, Watershed Restoration
Invasive Phragmites australis management in Great Salt Lake wetlands: Context dependency and scale effects on vegetation and seed banksChristine B. RohalUtah State University Doctoral thesishttps://digitalcommons.usu.edu/etd/7228/2018NoContingency, Herbicide, Invasive Plant Management, Phragmites Australis, Restoration, Utah
Investigating the temporal and spatial variability of flow and salinity levels in an ungaged watershed for ecological benefits:A case study of the Mentor Marsh watershedHari DhungelYoungstown State University Masters thesishttp://rave.ohiolink.edu/etdc/view?acc_num=ysu15320162619963272018NoCreek, Phragmites, Salinity, Marsh, Swat, Levelogger, Barolloger, Mentor Marsh Watershed
Slope and soil nutrients can explain the distribution of Phragmites australis and Phragmites japonica in riparian wetlandsHyun Jun Park, Bo Eun Nam, Mun Gi Hong, Jae Geun KimRiver Research and Applicationshttps://doi.org/10.1002/rra.33502018YesCommon Reed, Correspondence Correlation Analysis, Generalized Linear Model, Niche Separation, Runner Reed, Soil Nutrient
Genetic survey on a reed-bed in Central Italy showing early die-back symptomsEdoardo Sarti, Lorenzo Lastrucci, Daniela Gigante and Andrea CoppiBiologia 73(8)https://doi.org/10.2478/s11756-018-0096-42018YesAflp Approach, Genetic Structure, Historical Vegetation Map Analysis, Phragmites Australis, Tuscany
Effects of Phragmites management on the ecology of a wetlandAmy Krzton-Presson, Brett Davis, Kirk Raper, Katlyn Hitz, Christopher Mecklin, Howard WhitemanNortheastern Naturalisthttp://www.bioone.org/doi/10.1656/045.025.03082018YesHabitat Restoration, Monitoring, Water Chemistry, Wildlife Diversity, Stable-Isotope, Herbicide, Treatment
Morphological and anatomical changes of Phragmites australis Cav. due to the uptake and accumulation of heavy metals from polluted soilsTatiana Minkina, Grigoriy Fedorenko, Dina Nevidomskaya, Aleksei Fedorenko, Victor Chaplygin, Saglara MandzhievaScience of the Total Environment 636https://doi.org/10.1016/j.scitotenv.2018.04.3062018YesHeavy Metals, Spolic Technosols, Phragmites Australis Cav., Anthropogenic Contamination, Ultrastructure, Plastids
Complementary responses of morphology and physiology enhance the stand‐scale production of a model invasive species under elevated CO2 and nitrogenThomas J. Mozder, Joshua S. CaplanFunctional Ecologyhttps://doi.org/10.1111/1365-2435.131062018NoCarbon Dioxide, Functional Traits, Global Change, Leaf Morphology, Nitrogen Eutrophication, Photosynthesis, Phragmites Australis (Common Reed)
The effect of water velocity on nitrate removal in vegetated waterwaysGiuseppe Castaldelli, Vassilis Aschonitis, Fabio Vincenzi, Elisa Anna Fano, Elisa SoanaJournal of Environmental Management 215, 230-238.https://doi.org/10.1016/j.jenvman.2018.03.0712018YesNo3− Removal, Denitrification, Aquatic Vegetation, Flow Velocity, Slow-Flow Waterways, Wetlands
Nitrogen uptake kinetics and saltmarsh plant responses to global changeGrace M. Cott, Joshua S. Caplan, Thomas J. MozdzerScientific Reports 8 (5393)https://doi.org/10.1038/s41598-018-23349-82018NoCoastal Wetland, Nitrogen, Community, Productivity, Carbon Dioxide, Climate Change, Carbon Sink
Mapping freshwater marsh species in the wetlands of Lake Okeechobee using very high-resolution aerial photography and lidar dataCaiyun Zhangg, Sara Denka, Deepak R. MishraInternational Journal of Remote Sensinghttps://doi.org/10.1080/01431161.2018.14552422018YesAbundance, Distribution, Habitat Change, Restoration, Florida, Lidar, Aerial Image Analysis
AFLP Approach Reveals Variability in Phragmites australis: Implications for Its Die-Back and Evidence for Genotoxic EffectsAndrea Coppi, Lorenzo Lastrucci, David Cappelletti, Martina Cerri, Francesco Ferranti, Valentina Ferri, Bruno Foggi, Daniela Gigante, Roberto Venanzoni, Daniele Viciani, Roberta Selvaggi, Lara RealeFrontiers in Plant Sciencehttps://doi.org/10.3389/fpls.2018.003862018NoOutlier Loci, Heavy Metals, Dna Fingerprinting, Common Reed, Wetlands, Central Italy
Impacts of Phragmites australis Invasion on Soil Enzyme Activities and Microbial Abundance of Tidal MarshesSunghyun Kim, Jiyoung Kang, J. Patrick Megonigal, Hojeong Kang, Jooyoung Seo, Weixin DingSoil Microbiologyhttps://doi.org/10.1007/s00248-018-1168-22018YesMicrobial Activity, Microbial Abundance, Salt Marsh, Ch4 Emission, Phragmites Invasion
Fungal Disease Prevention in Seedlings of Rice (Oryza sativa) and Other Grasses by Growth-Promoting Seed-Associated Endophytic Bacteria from Invasive Phragmites australisSatish K. Verma, Kathryn L. Kingsley, Marshall S. Bergen, Kurt P. Kowalski, James F. WhiteMicroorganisms 6(1)https://doi.org/10.3390/microorganisms60100212018NoAntifungal Activity, Biocontrol, Disease Suppression, Seedling Development
Effects of European common reed on Blanding’s turtle spatial ecologyChantel E. Markle, Patricia Chow-FraserJournal of Wildlife Managementhttps://doi.org/10.1002/jwmg.214352018YesEmydoidea Blandingii, European Common Reed, Great Lakes, Habitat Selection, Home Range, Invasive Species, Phragmites Australis, Reptile, Wetland
Morphological responses to competition modulated by abiotic factors in two monoculture-forming wetland plantsAlexander D. Ameen, Alexander S.Kolker, Caz M.TayloraAquatic Botany 147, 61-67.https://doi.org/10.1016/j.aquabot.2018.03.0032018YesCompetition, Stressors, Nitrogen, Salinity, Soil Organic Matter, Restoration
Grasses as appropriate targets in weed biocontrol: is the common reed, Phragmites australis, an anomaly?Richard A. Casagrande, Patrick Häfliger, Hariet L. Hinz, Lisa Tewksbury, Bernd BlosseyBiocontrol.https://doi.org/10.1007/s10526-018-9871-y2018YesDemography, Host Specificity, Non Target Effects, Risk Assessment, Phragmites Australis (Cav.) Trin. Ex Steud, Weed Biocontrol
Taxonomic structure and function of seed-inhabiting bacterial microbiota from common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia L.)Ting Gao, Xian-Yang ShiArchives of Microbiologyhttps://doi.org/10.1007/s00203-018-1493-32018YesBacterial Seed Endophytes, Common Reed, Narrowleaf Cattail, Pyrosequencing
Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restorationChantel E. Markle, Gillian Chow-Fraser, Patricia Chow-FraserPLoS ONE 13(2)https://doi.org/10.1371/journal.pone.01921342018NoHerpetofauna Diversity, Aerial Image Analysis, Habitat, Connectivity, Wetland, Restoration
The influence of an invasive plant on denitrification in an urban wetlandSarah S. Roley, Michael R. Grace, Perran L.M. CookFreshwater Biologyhttps://doi.org/10.1111/fwb.130732018YesCoupled Nitrification-Denitrification, Nitrogen, Stable Isotopes, Phragmites Australis, Typha Domingensis
Disease protection and allelopathic interactions of seed-transmitted endophytic pseudomonads of invasive reed grass (Phragmites australis)James F. White, Kathryn I. Kingsley, Kurt P. Kowalski, Ivelisse Irizarry, April Micci, Marcos A. Soares, Marshall S. BergenPlant Soil (2018) 422:195–208https://link.springer.com/article/10.1007%2Fs11104-016-3169-62018YesBioherbicide, Ecosystem Engineering, Microbiome, Pseudomonas, Reactive Oxygen, Rhizophagy, Phragmites, Symbiosis
Living in two worlds: Evolutionary mechanisms act differently in the native and introduced ranges of an invasive plantWen-Yong Guo, Carla Lambertini, Petr Pysek, Laura A Meyerson, Hans BrixEcology and Evolution.https://dx.doi.org/10.1002/ece3.38692018NoBiological Invasion, Common Reed, Evolution, Human Activities, Isolation By Distance, Isolation By Environment, Landscape Genetics, Phragmites, Spatial Genetic Structure
Salinity and Inundation Tolerance of Phragmites australis ssp. americanus: A Greenhouse Experiment and Field Study on a Tributary of the Chesapeake BayDiane E Leason, Andrew H BaldwinThesis, University of Marylandhttps://drum.lib.umd.edu/handle/1903/204402018NoEnvironmental Science, Plant Sciences, Inundation, Native Plants, Phragmities, Restoration, Salt Tolerance, Wetland
Geographic variation in apparent competition between native and invasive Phragmites australisGanesh P Bhattarai, Laura A Meyerson, James T CroninEcology 98(2)https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecy.16462018YesApparent Competition, Enemy Release, Hyalopterus Pruni, Indirect Interactions, Invasive Plant, Latitudinal Gradients, Lipara Sp., Plant-Herbivore Interactions
Small genome separates native and invasive populations in an ecologically important cosmopolitan grassPetr Pyšek, Hana Skálová, Jan Čuda, Wen‐Yong Guo, Jan Suda, Jan Doležal, Ondřej Kauzál, Carla Lambertini, Magdalena Lučanová, Terezie Mandáková, Lenka Moravcová, Klára Pyšková, Hans Brix, Laura A. MeyersonEcology 99(1), PP. 79-90.https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/ecy.20682018NoBiogeography, Climate, Common Reed, Plant Invasion, Source Population, Species Traits.
Identification of native and invasive subspecies of common reed (Phragmites australis) in Alberta, Canada, by RNase-H-dependent PCRKrista Zuzak, Yalong Yang, Nicole Kimmel, Michael Harding, David Feindel, Jie FengBotany 96(2), pp. 145-150.https://doi.org/10.1139/cjb-2017-01522017Yes Rhpcr, Rflp, Haplotypes, Dna Polymorphism, Rnase-H-Dependent
Surveying managers to inform a regionally relevant invasive Phragmites australis control research programC.B. Rohal, K.M. Kettenring, K. Sims, E.L.G. Hazelton, Z. MaJournal of Environmental Management 206, pp. 807-816https://doi.org/10.1016/j.jenvman.2017.10.0492017YesInvasive Species, Knowledge Co-Production, Knowing-Doing Gap, Phragmites Australis, Utah, Wetland Restoration
Biominerals and waxes of Calamagrostis epigejos and Phragmites australis leaves from post-industrial habitatsEwa Talik, Adam Guzik, Eugeniusz Małkowski, Gabriela Woźniak, Edyta SierkaProtoplasmahttps://doi.org/10.1007/s00709-017-1179-82017NoCalamagrostis Epigejos, Phragmites Australis, Biomineralization, Calcium Carbonate, Calcium Oxalate, Phytoliths, Mineralized Plant Waxes
Unraveling the effects of arbuscular mycorrhizal fungus on uptake, translocation, and distribution of cadmium in Phragmites australis (Cav.) Trin. ex SteudXiaochen Huang, Li Wang, Shishu Zhu, Shih-Hsin Ho, Jieting Wu, Prasant K. Kalita, Fang MaEcotoxicology and Environmental Safety 149, pp 43-50https://doi.org/10.1016/j.ecoenv.2017.11.0112017YesRhizophagus Irregularis, Cd, Subcellular Distribution, Chemical Forms, Tem, Ftir
Nitrogen species coupled with transpiration enhance Fe plaque assisted aquatic uranium removal via rhizofiltration of Phragmites australis Trin ex SteudWeiqing Wang, E. Gert DudelJournal of Environmental Radioactivity 181https://doi.org/10.1016/j.jenvrad.2017.11.0112017YesRedox State, Biomass Partition, Nitrate, Ammonium, Areal Removal Rate
Probabilistic neural network and wavelet transform for mapping of Phragmites australis using low altitude remote sensingLuan Casagrande, Gustavo Mello Machado, Sathishkumar Samiappan, Gray Turnage, Lee Hathcock, Robert MoorheadInstitute of Electrical and Electronics Engineers (IEEE Xplore)https://doi.org/10.1109/SIBGRAPI.2017.422017YesProbablistic Neural Networks, Wavelets, Image Texture Classification, Wetlands, Phragmites
Cosmopolitan species as ecophysiological models for responses to global change: the common reed Phragmites australisFranziska Eller, Hana Skálová, Joshua S. Caplan, Ganesh P. Bhattarai, Melissa K. Burger, James T. Cronin, Wen-Yong Guo, Xiao Guo, Eric L. G. Hazelton, Karin M. Kettenring, Carla Lambertini, Melissa K. McCormick, Laura A. Meyerson, Thomas J. Mozdzer, Petr Pyšek, Brian K. Sorrell, Dennis F. Whigham, Hans BrixFrontiers in Ecologyhttps://www.frontiersin.org/articles/10.3389/fpls.2017.01833/abstract2017NoAtmospheric Co2, Climate Change, Eutrophication, Global Distribution, Intraspecific Variation, Invasive Species, Salinity, Temperature
Influences of different halophyte vegetation on soil microbial community at temperate salt marshDoongar R. Chaudhary, Jinhyun Kim, Hojeong KangMicrobial Ecologyhttps://doi.org/10.1007/s00248-017-1083-y2017YesEnzymes, Functional Gene Abundance, Microbial Community, Plfa, Salt Marsh
Impacts of Phragmites australis on Diamondback Terrapin nesting in Chesapeake BayCassandra E. Cook, Allison M. McCluskey, Randolph M. ChambersEstuaries and Coastshttps://doi.org/10.1007/s12237-017-0325-z2017YesDiamondback Terrapin, Invasive Species, Phragmites Autralis, Nesting
Phragmites removal increases property values in Michigan’s Lower Grand River watershedPaul Isely, Erik E. Nordman, Shaun Howard, Richard BowmanJournal of Ocean and Coastal Economics 4(1)https://cbe.miis.edu/joce/vol4/iss1/5/2017NoCoastal, Economic Analysis, Removal, Cost, Treatement
Landscape-level strategies for conservation of imperiled freshwater turtlesChantel E MarkleMcMaster University graduate thesishttps://hdl.handle.net/11375/220772017NoTurtle, Habitat Selection, Landscape, Conservation, Monitoring
Valuation of Biomaterial: Phragmites australis in the Retention of Metal-Complexed DyesAida Kesraoui, Asma Mabrouk, Mongi SeffenAmerican Journal of Environmental Sciences 13(3)https://doi.org/10.3844/ajessp.2017.266.2762017NoLingo-Cellulosic Biomass, Phragmites Australis, Biosorption, Alpacide Blue, Modeling
Spatial and Temporal Variation in Brackish Wetland Seedbanks: Implications for Wetland Restoration Following Phragmites ControlEric L. G. Hazelton, Rebekah Downard, Karin M. Kettenring, Melissa K. McCormick, Dennis F. WhighamEstuaries and Coastshttps://doi.org/10.1007/s12237-017-0289-z2017NoInvasive Plant Removal, Seedbank, Estuary, Chesapeake Bay, Phragmites, Revegetation
Phenotypic Variation Among Invasive Phragmites australis Populations Does Not Influence Salinity ToleranceForest R. Schenck, Torrance C. Hanley, R. Edward Beighley, A. Randall HughesEstuaries and Coastshttps://doi.org/10.1007/s12237-017-0318-y2017NoCommon Garden, Ecosystem Engineer, Germination, Intraspecific Variation, Invasive Species, Salt Marsh
Responses of plant species diversity and soil physical-chemical-microbial properties to Phragmites australis invasion along a density gradientMD Nazim Uddin, Randall William Robinson Scientific Reports 7https://doi.org/10.1038/s41598-017-11205-02017NoCoastal Wetland, Soil, Mycorrhizal Potential, Species Richness, Diversity, Ecological Disruption, Phragmites Density
Growth and physiology responses of Phragmites australis to combined drought-flooding condition in inland saline-alkaline marsh, Northeast ChinaBolong Wen, Xiaoyu Li, Fei Yang, Xinrui Lu, Xiujun Li, Fuyi YangEcological Engineering 108(A)https://doi.org/10.1016/j.ecoleng.2017.08.0362017YesPhragmites Australis, Saline-Alkaline Marsh, Combined Drought-Flooding, Photosynthesis, Biomass, Sodium Ions
Lineage overwhelms environmental conditions in determining rhizosphere bacterial community structure in a cosmopolitan invasive plantJennifer L. Bowen, Patrick J. Kearns, Jarrett E. K. Byrnes, Sara Wigginton, Warwick J. Allen, Michael Greenwood, Khang Tran, Jennifer Yu, James T. Cronin, Laura A. MeyersonNature Communicationshttps://dx.doi.org/10.1038/s41467-017-00626-02017NoBacterial Communities, Rhizosphere, Antimicrobial Biosynthesis, Phragmites Lineages
Vegetation recovery in an oil-impacted and burned Phragmites australis tidal freshwater marshScott Zengel, Jennifer Weaver, Susan L. Wilder, Jeff Dauzat, Chris Sanfilippo, Martin S. Miles, Kyle Jellison, Paige Doelling, Adam Davis, Barret K. Fortier, James Harris, James Panaccione, Steven Wall, Zachary NixonaScience of the Total Environment 612https://doi.org/10.1016/j.scitotenv.2017.08.2212017YesPhragmites Australis, Sagittaria Spp., Tidal Freshwater Marsh, Oil Spill, In-Situ Burning, Ecological Recovery, Scale Insect Damage
Common reed (Phragmites australis) gall as the limiting nesting resource of rare wetland bees and wasps (Hymenoptera: Aculeata & Evanioidea) in Central EuropePetr Heneberg, Petr Bogusch, Pavlína Tauchmanová, Milan Řezáč, Alena AstapenkováEcological Engineering 108(A)https://doi.org/10.1016/j.ecoleng.2017.08.0142017YesBiodiversity Conservation, Conservation Management, Mosaic Management, Reed Harvesting, Reed Cutting, Reed Expansion
Effects of Warming on Invasive Phragmites australis and Native Spartina patens Seed Germination Rates and Implications for Response to Climate ChangeRose M. MartinNortheastern Naturalist 24(3)https://doi.org/10.1656/045.024.03012017YesClimate Change, Germination Rate, Native Species
Vertical distribution characteristics of photosynthetic parameters for Phragmites australis in Liaohe River Delta wetland, ChinaWenying Yu, Ruipeng Ji, Qingyu Jia, Rui Feng, Jinwen Wu, Yushu ZhangJournal of Freshwater Ecology 32(1), pp 557-573https://dx.doi.org/10.1080/02705060.2017.13586772017No Wetland, Photosynthetic Parameters, Light Response, Simulation, Phragmites Australis
Effect of harvest time and frequency on biomass quality and biomethane potential of Common Reed (Phragmites australis) under paludiculture conditionsFederico Dragoni, Vittoria Giannini, Giorgio Ragaglini, Enrico Bonari, Nicola SilvestriBioEnergy Researchhttps://doi.org/10.1007/s12155-017-9866-z2017NoBiogas, Anaerobic Digestion, Perennial Grasses, Fiber Components, Digestion Kinetics, Peatland Cultivation
Metabolism of carbamazepine in plant roots and endophytic rhizobacteria isolated from Phragmites australisAndrés Sauvêtre, Robert May, Rudolf Harpaintner, Charlotte Poschenrieder, Peter SchröderJournal Hazardous Materials 342(15), pp 85-95https://doi.org/10.1016/j.jhazmat.2017.08.0062017YesEndophytic Bacteria, Hairy Roots, Glutathione Conjugate, Acridine Pathway, Phytoremediation
Native and non-native halophytes resiliency against sea-level rise and saltwater intrusionLian Xue, Ziuzhen Li, Zhongzheng Yan, Qian Zhang, Wenhui Ding, Xing Huang, Bo Tian, Zhenming Ge, Qiuxiao YinHydrobiologiahttps://doi.org/10.1007/s10750-017-3333-x2017NoSalt Marsh, Macrophytes, Environmental Gradient, Salinty, Biomass, Global Changes
Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australisXiaochen Huang, Shishu Zhu, Shih-Hsin Ho, Li Wang, Fang MaChemospherehttps://doi.org/10.1016/j.chemosphere.2017.08.0212017YesCadmium Stress, Arbuscular Mycorrhizal Fungus, Enzymes, Thiolic Compounds, Principal Component Analysis, Phytotoxicity
Changes associated with Phragmites australis invasion in plant community and soil properties: A study on three invaded communities in a wetland, Victoria, AustraliaMd N. Uddin, Randall W. RobinsonLimnologica – Ecology and Management of Inland Watershttps://doi.org/10.1016/j.limno.2017.07.0062017YesPlant Invasion, Biodiversity, Soil Properties, Arbuscular Mycorrhizal Fungi, Wetland
Mapping the change of Phragmites australis live biomass in the lower Mississippi River Delta marshesElijah W. Ramsey, Amina RangoonwalaUS Geological Survey, 2017-1098https://doi.org/10.3133/ofr201710982017NoRemote Sensing, Vegetation Index, Biomass
Prioritizing Management of the Invasive Grass Common Reed (Phragmites australis) in Great Salt Lake WetlandsA. Lexine Long, Karin M. Kettenring, Richard TothInvasive Plant Science and Management 10(2)https://doi.org/10.1017/inp.2017.202017NoInvasive Species Control, Species Distribution Modeling, Systematic Regional Planning, Wetland Management, Wetland Resoration, Wetlands
Demographic and macro-morphological evidence for common reed dieback in central ItalyLorenzo Lastrucci, Lorenzo Lazzaro, Andrea Coppi, Bruno Foggi, Francesco Ferranti, Roberto VenanzoniPlant Ecology and Diversityhttps://dx.doi.org/10.1080/17550874.2017.13514992017YesClumping, Macro-Morphological Traits, Mediterranean Basin, Permanent Flooding, Phragmites Australis, Wetlands
Management of invasive Phragmites australis in the Adirondacks: a cautionary tale about prospects of eradicationBrendan Quirion, Zachary. Simek, Andrea Dávalos, Bernd BlosseyBiological Invasionshttps://doi.org/10.1007/s10530-017-1513-22017NoAdirondacks, Eradication, Herbicide, Invasive Species, Management, Phragmites Australis
Characterizing Past and Modelling Future Spread of Phragmites australis ssp. australis at Long Point Peninsula, Ontario, CanadaJennifer A. Jung, Daniel Rokitnicki-Wojcik, Jonathan D. MidwoodWetlandshttps://doi.org/10.1007/s13157-017-0931-32017NoPhragmites, Spread, Spatial Anaylsis, Boosted, Regression Tree, National Wildlife Area
The response of Phragmites to fluctuating subsurface water levels in constructed stormwater management systemsHans Martin Hanslin, Trond Maehlum, Arne SaeboEcological Engineeringhttps://doi.org/10.1016/j.ecoleng.2017.06.0192017YesRooting Depth, Fluctuating Watertable, Biomass Allocation, Wetland Vegetation
Claviceps arundinis identification and its role in the die-back syndrome of Phragmites australispopulations in central ItalyMartina Cerri, Francesco Ferranti, Andrea Coppi, Bruno Foggi, Daniela Gigante, Lorenzo Lastrucci, Andrea Onofri, Roberto Venanzoni, Daniele Viciani, Lara RealePlant Biosystemshttps://dx.doi.org/10.1080/11263504.2017.13471112017YesAlkaloid, Claviceps, Common Reed, Die-Back, Sclerotia, Seed
Competition among native and invasive Phragmites australis populations: An experimental test of the effects of invasion status, genome size, and ploidy levelPetr Pyšek, Jan Čuda, Petr Šmilauer, Hana Skálová, Zuzana Chumová, Carla Lambertini, Magdalena Lučanová, Hana Ryšavá, Pavel Trávníček, Kristýna Šemberová, Laura A. Meyerson Ecology and Evolutionhttps://doi.org/10.1002/ece3.59072020NoCommon Reed, Europe, Genome Size, Intraspecific Competition, Native Populations, North America, Plant Invasion, Ploidy Level
Nitrogen immobilization may reduce invasibility of nutrient enriched plant community invaded by Phragmites australisMd Nazim Uddin, Randall William Robinson, Takashi Asaeda Scientific Reports https://doi.org/10.1038/s41598-020-58523-4%C2%A02020NoGreenhouse, Nitrogen, Productivity, Diversity, Invasibility, Wetland Community, Restoration, Biomass
Invasive species and biotic homogenization in temperate aquatic plant communitiesRanjan Muthukrishnan, Daniel J. LarkinGlobal Ecology and Biogeography https://doi.org/10.1111/geb.130532020YesAquatic Diversity, Β-Diversity, Biotic Homogenization, Invasive Species, Lake, Native Species
The impacts of invasive ecosystem engineers in freshwaters: A reviewHolly E. Emery‐Butcher, Stephen J. Beatty, Belinda J. RobsonFreshwater Biology https://doi.org/10.1111/fwb.134792020NoAquatic Environments, Ecosystem Disturbance, Habitat Alteration, Invasive Species, Species Trait
Intraspecific and biogeographical variation in foliar fungal communities and pathogen damage of native and invasive Phragmites australisWarwick J. Allen, Aaron E. DeVries, Nicholas J. Bologna, Wesley A. Bickford, Kurt P. Kowalski, Laura A. Meyerson, James T. CroninGlobal Ecology and Biogeographyhttps://doi.org/10.1111/geb.130972018YesBiotic Resistance, Diversity, Endophytes, Enemy Release, Genotype, Invasive Plant, Latitudinal Gradients, Native Plant, Phragmites Australis, Plant-Fungi Interactions
Native plant recovery following three years of Common Reed (Phragmites australis) controlChristopher L. Zimmerman, Rebecca R. Shirer, Jeffrey D. CorbinInvasive Plant Science and Managementhttps://doi.org/10.1017/inp.2018.242018NoCommunity Composition, Herbicide, Invasion Control, Hudson River, Monitoring, Restoration, Tidal Wetland
Soil factors determining the distribution of Phragmites australis and Phacerlurus latifolius in upper tidal zone Bo Eun Nam, Mun Gi Hong, Hyun Jun Park, Jae Geun Kim Journal of Ecology and Environmenthttps://doi.org/10.1186/s41610-018-0086-z2018NoCommon Reed, Halophytes, Redundancy Analysis, Soil Salinity, Tidal Channel
Provenance of invaders has scale-dependent impacts in a changing wetland ecosystemKathryn L. Amatangelo, Lee Stevens, Douglas A. Wilcox, Stephen T. Jackson, Dov F. SaxNeoBiota 40, 51-72.https://doi.org/10.3897/neobiota.40.289142018NoWetland, Invasion, Exotic, Phragmites, Typha, Scale, Richness
Phyllobacterium phragmitis sp. nov., an endophytic bacterium isolated from Phragmites australis rhizome in Kumtag DesertLi-xiong Liang, Qi-wu Sun, Nan Hui, Xiao-xia Zhang, Lu-bin Li, Lei Liu Antonie van Leeuwenhoekhttps://doi.org/10.1007/s10482-018-1195-52018YesPhragmites Australis, Phyllobacterium, Novel Species, Rhizome
High grazing pressure of geese threatens conservation and restoration of reed beltsElisabeth S. Bakker, Ciska G. F. Veen, Gerard J. N. Ter Heerdt, Naomi Huig, Judith M. SarneelFrontiers in Plant Sciencehttps://doi.org/10.3389/fpls.2018.016492018NoAnser Anser, Aquatic Plant, Exclosure, Herbivory, Lansdscape, Configuration, Phragmites Australis, Restoration, Wetland
Comparative study of epiphytic algal communities on Typha latifolia L. and Phragmites australis (Cav.) Trin. ex Steud in the shallow Gala Lake (European Part of Turkey)Öterler BurakJournal of Oceanography and Limnology 36(5), pp 1615-1628.https://link.springer.com/article/10.1007/s00343-018-7128-32018NoCommunity Structure, Epiphytic Algae, Shallow Lake, Typha Latifola, Phragmites Australis
Estimating the Aboveground Biomass of Phragmites australis (Common Reed) Based on Multi-Source DataYingkun Du, Jing Wang, Yifan Lin, Zhengjun Liu, Haiying Yu, Haiyan Yi IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposiumhttp://doi.org/10.1109/IGARSS.2018.85173042018YesAboveground Biomass, Hyperspectral Data, Lidar, Phragmites Australis, Wetland Vegetation
Decomposition of Standing Litter Biomass in Newly Constructed Wetlands Associated with Direct Effects of Sediment and Water Characteristics and the Composition and Activity of the Decomposer Community Using Phragmites australis as a Single Standard SubstrateCiska C. Overbeek, Harm G. van der Geest, E. Emiel van Loon, Wim Admiraal Wetlands https://doi.org/10.1007/s13157-018-1081-y2018NoPhragmites Australis, Decomposer Community, In Situ Experiment, All-Possible-Subsets Regression
Grazer deterrence and fungal inhibition by the invasive marsh grass Phragmites australis and the native sedge Bolboschoenus robustus in a mesohaline marshC. E. Kicklighter, S. Duca, A. K. S. Jozwick, H. Locke, C. Hundley, B. Hite, G. HannifinChemoecology 28(6), pp 163-172. https://doi.org/10.1007/s00049-018-0269-12018YesAntifungal, Estuarine, Plant-Herbivore, Resistance To Herbivory, Wetland
Efficacy of glyphosate and fluazifop-P-butyl herbicides with adjuvants at different levels of cutting for the common reed (Phragmites australis)Ahmed Ibrahim El-TokhyJournal of Plant Protection Research 58(3), pp 282-288. https://doi.org/10.24425/jppr.2018.1246362018NoAdjuvants, Fluazifop-P-Butyl, Glyphosate, Herbicide, Phragmites
Biosorption of mercury by Reed (Phragmites australis) as a Potential clean water technologyPaula Cecilia Soto-Ríos, Marco Antonio León-Romero, Otongtuya Sukhbaatar, Osamu Nishimura Water, Air & Soil Conservation 229(328)https://doi.org/10.1007/s11270-018-3978-82018NoBiosorption, Mercury, Reed
Detecting the effects of biological invasion and subsequent control efforts on wetland ecological processesSarah YuckinGraduate thesis - University of Waterloohttp://hdl.handle.net/10012/138882018NoNet Primary Production, Macronutrient, Ecosystem Function
Tidal Hydrology and Salinity Drives Salt Marsh Vegetation Restoration and Phragmites australis Control in New EnglandJennifer M. Karberg, Karen C. Beattie, Danielle I. O’Dell, Kelly A. OmandWetlandshttps://doi.org/10.1007/s13157-018-1051-42018NoSalt Marsh Restoration, Tidal Restriction, Phragmites Australis, Tidal Restoration, Soil Salinity, Hydrology
Genetic and epigenetic changes during the invasion of a cosmopolitan species (Phragmites australis)Lele Liu, Cuiping Pei, Shuna Liu, Xiao Guo, Ning Du, Weihua GuoEcology and Evolution https://doi.org/10.1002/ece3.41442018NoDan Methylation, Epigenetics, Methylation-Sensitive Amplification Polymorphism, Phragmites Australis, Plant Invasion
Monitoring Spatial Variability and Temporal Dynamics of Phragmites Using Unmanned Aerial VehiclesViktor R. TothFrontiers in Plant Sciencehttps://doi.org/10.3389/fpls.2018.007282018NoUav, Ndvi, Phenology, Macrophyte, Die-Back, Mowing
Host specificity and risk assessment of Archanara geminipuncta and Archanara neurica, two potential biocontrol agents for invasive Phragmites australis in North AmericaBernd Blossey, Patrick Häfligerb, Lisa Tewksbury, Andrea Dávalosd, Richard CasagrandecBiological Controlhttps://doi.org/10.1016/j.biocontrol.2018.05.0192018YesArchanara Geminiuncta, Archanara Neurica, Biological Weed Control, Common Reed, Host Specificity, Phragmites, Sub-Species Level Specificity, Wetlands Management
Microbial Response to Salt Marsh RestorationChristopher A. LynumBachelor of Science thesis, Northeastern Universityhttps://search.proquest.com/openview/3f67460952c03d6964718d6eef8385db/1?pq-origsite=gscholar&cbl=18750&diss=y2018NoMicrobial Community, Salinity, Restoration
Intraspecific variation in indirect plant–soil feedbacks influences a wetland plant invasionWarwick J. Allen, Laura A. Meyerson, Andrew J. Flick, James T. CroninEcologyhttps://doi.org/10.1002/ecy.23442018yesIndirect Interactions, Interspecific Competition, Invasive Species, Nutrients, Phragmites Australis, Soil Biota, Soil Legacy, Spartina Alterniflora, Spillover
Influence of die-back syndrome on reproductive strategies within Phragmites australis populationsMartina Cerri, Francesco Ferranti, Andrea Coppi, Bruno Foggi, Daniela Gigante, Lorenzo Lastrucci, Andrea Onofri, Roberto Venanzoni, Daniele Viciani, Lara RealePlant Biosystemshttps://doi.org/10.1080/11263504.2018.14733022018YesClonal Propagation, Die-Back, Seed Germination, Seed Viability, Sexual Reproduction
The Role of Propagule Type, Resource Availability, and Seed Source in Phragmites Invasion in Chesapeake Bay WetlandsKarin M. Kettenring, Dennis F. Whigham Wetlandshttps://doi.org/10.1007/s13157-018-1034-52018NoClonality, Disturbance Dynamics, Phragmites Australis, Recruitment Limitation, Rhizomes, Seedlings